Let's call any (contiguous) subarray B (of A) a mountain if the following properties hold:
B.length >= 3
- There exists some
0 < i < B.length - 1
such thatB[0] < B[1] < ... B[i-1] < B[i] > B[i+1] > ... > B[B.length - 1]
(Note that B could be any subarray of A, including the entire array A.)
Given an array A
of integers, return the length of the longest mountain.
Return 0
if there is no mountain.
Example 1:
Input: [2,1,4,7,3,2,5]
Output: 5
Explanation: The largest mountain is [1,4,7,3,2] which has length 5.
Example 2:
Input: [2,2,2]
Output: 0
Explanation: There is no mountain.
Note:
0 <= A.length <= 10000
0 <= A[i] <= 10000
Follow up:
- Can you solve it using only one pass?
- Can you solve it in
O(1)
space?
题目链接:https://leetcode.com/problems/longest-mountain-in-array/
题目分析:要求一次遍历且O(1)空间,需要分一些情况讨论
设变量incr和decr分别表示到当前位置pos时之前连续序列的递增数和递减数,若A[pos]<=A[pos+1],此时无论decr的值是多少都需要清0,但若incr不为0则说明之前存在一个mountain,更新答案,对incr也清0(此时的incr表示之前一组连续上升序列的长度)若A[pos]==A[pos+1],则incr=0,若A[pos]<A[pos+1],incr加1,这都很好理解,递减的情况只需要更新decr即可
击败100%
class Solution {
public int longestMountain(int[] A) {
int incr = 0, decr = 0, ans = 0;
for (int i = 0; i < A.length - 1; i++) {
if (A[i] <= A[i + 1]) {
if (decr > 0) {
if (incr > 0) {
ans = Math.max(ans, decr + incr + 1);
incr = 0;
}
decr = 0;
}
if (A[i] < A[i + 1]) {
incr++;
} else {
incr = 0;
}
} else if (A[i] > A[i + 1]) {
decr++;
}
}
if (decr > 0 && incr > 0) {
ans = Math.max(ans, decr + incr + 1);
}
return ans;
}
}