HDU 5950 Recursive sequence (矩阵快速幂)

本文探讨了递归数列的高效求解方法,通过矩阵快速幂技术解决了一个特定的递归数列问题,该数列包含了一次项、平方项、三次方项和四次方项的复杂组合。

Recursive sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 4283    Accepted Submission(s): 1852


Problem Description

Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i^4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 

Input

The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 2^31 as described above.

Output

For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.

Sample Input

2
3 1 2
4 1 10

Sample Output

85
369

Hint

In the first case, the third number is 85 = 2*1十2十3^4. In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.

Source

2016ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950

题目大意:给f[1],f[2]和递推式f[i]=2*f[i-2]+f[i-1]+i^4,求f[n]

题目分析: 看到数据范围和递推式第一反应就是矩阵快速幂,f数组好办,i^4转移需先将(i+1)^4展开

(i+1)^4=i^4+4i^3+6i^2+4i+1,需要维护一个7*7的转移矩阵transation

(1,1,0,0,0,0,0)

(2,0,0,0,0,0,0)

(1,0,1,0,0,0,0)

(4,0,4,1,0,0,0)

(6,0,6,3,1,0,0)

(4,0,4,3,2,1,0)

(1,0,1,1,1,1,1)

(f[i],f[i-1],i^4,i^3,i^2,i,1)* transation =(f[i+1],f[i],(i+1)^4,(i+1)^3,(i+1)^2,i+1,1)

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const N = 7;
ll const MOD = 2147493647;
 
ll n, a, b;
 
struct matrix {
    ll mat[N][N];
    matrix() {
        memset(mat, 0, sizeof(mat));
    }
};
    
matrix mmul(matrix a, matrix b) {
    matrix ans;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            if (a.mat[i][j]) {
                for (int k = 0; k < N; k++) {
                    ans.mat[i][k] += (a.mat[i][j] * b.mat[j][k]) % MOD;
                    ans.mat[i][k] %= MOD;
                }
            }
        }
    }
    return ans;
}
 
matrix mqpow(matrix a, ll n) {
    matrix ans;
    for (int i = 0; i < N; i++) {
        ans.mat[i][i] = 1;
    }
    while (n) {
        if (n & 1) {
            ans = mmul(ans, a);
        }
        a = mmul(a, a);
        n >>= 1;
    }
    return ans;
}
 
int main() {
    int T;
    scanf("%d", &T);
    matrix x;
    while (T--) {
        ll n, a, b;
        scanf("%lld %lld %lld", &n, &a, &b);
        if (n == 1) {
            printf("%lld\n", a % MOD);
            continue;
        }
        if (n == 2) {
            printf("%lld\n", b % MOD);
            continue;
        }
        memset(x.mat, 0, sizeof(x.mat));
        x.mat[0][0] = 1; x.mat[0][1] = 1;
        x.mat[1][0] = 2;
        x.mat[2][0] = 1; x.mat[2][2] = 1;
        x.mat[3][0] = 4; x.mat[3][2] = 4; x.mat[3][3] = 1;
        x.mat[4][0] = 6; x.mat[4][2] = 6; x.mat[4][3] = 3; x.mat[4][4] = 1;
        x.mat[5][0] = 4; x.mat[5][2] = 4; x.mat[5][3] = 3; x.mat[5][4] = 2; x.mat[5][5] = 1;
        x.mat[6][0] = 1; x.mat[6][2] = 1; x.mat[6][3] = 1; x.mat[6][4] = 1; x.mat[6][5] = 1; x.mat[6][6] = 1;
        x = mqpow(x, n - 2);
        ll init[7] = {b, a, 16, 8 ,4, 2, 1};
        ll ans = 0;
        for (int i = 0; i < N; i++) {
            ans = ans + init[i] * x.mat[i][0];
            ans %= MOD;
        }
        printf("%lld\n", ans);
    }
}

 

### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值