POJ 2528 Mayor's posters (线段树区间更新 + 离散化)

本文介绍了一道关于市长竞选期间海报放置的算法题。题目要求计算在规定墙面上,不同候选人按顺序放置并可能互相覆盖的海报中,最终有多少张海报能够被看到。文章提供了完整的代码实现,并对代码进行了详细的解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mayor's posters
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 52874 Accepted: 15402

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
  • Every candidate can place exactly one poster on the wall. 
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
  • The wall is divided into segments and the width of each segment is one byte. 
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed. 

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

Alberta Collegiate Programming Contest 2003.10.18


题目大意:后贴的海报覆盖先贴的,问最后区间能看到几张海报(不一定要看到整张)

题目分析:开始刚好理解错,当成后贴的放在先贴的下面了,wa成狗,不过不要紧,直接把for循环顺序变一下就行了,由于区间范围太大,直接建树肯定gg,所以采用离散化,sort+unique不要太方便,这题数据很神奇,用map的时间是用数组的10倍,用数组的内存是用map的10倍,不过都可过~
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
using namespace std;
int const MAX =  1e4 + 5;
int const MAXM = 1e7 + 5;
//map <int, int> chg;
int chg[MAXM];

int x[MAX * 2];
bool col[MAX << 2];

struct DATA
{
    int l, r;
}d[MAX];

void PushUp(int rt)
{
    col[rt] = (col[rt << 1] & col[rt << 1 | 1]); 
}

void PushDown(int rt)
{
    if(col[rt])
    {
        col[rt << 1] = col[rt];
        col[rt << 1 | 1] = col[rt];
        col[rt] = false;
    }
}

bool Update(int L, int R, int l, int r, int rt)
{
    if(L <= l && r <= R)
    {
        if(!col[rt])
        {
            col[rt] = true;
            return true;
        }
        return false;
    }
    bool f = false;
    PushDown(rt);
    int mid = (l + r) >> 1;
    if(L <= mid)
        f |= Update(L, R, lson);
    if(mid < R)
        f |= Update(L, R, rson);
    PushUp(rt);
    return f;
}

int main()
{
    int T;
    scanf("%d", &T);
    while(T --)
    {
        memset(col, false, sizeof(col));
        int n, ans = 0, cnt = 0;
        scanf("%d", &n);
        for(int i = 0; i < n; i++)
        {
            scanf("%d %d", &d[i].l, &d[i].r);
            x[cnt ++] = d[i].l;
            x[cnt ++] = d[i].r;
        }
        sort(x, x + cnt);
        cnt = unique(x, x + cnt) - x;
        for(int i = 0; i < cnt; i++)
            chg[x[i]] = i + 1;
        for(int i = n - 1; i >= 0; i--)
            if(Update(chg[d[i].l], chg[d[i].r], 1, cnt, 1))
                ans ++;
        printf("%d\n", ans);
    }
}






内容概要:本文档详细介绍了一个基于MATLAB实现的电力负荷预测项目,该项目运用遗传算法(GA)优化支持向量回归(SVR)和支持向量机(SVM)模型的超参数及特征选择。项目旨在解决电力系统调度、发电计划、需求侧响应等多个应用场景中的关键问题,特别是在应对高比例可再生能源接入带来的非线性、非平稳负荷预测挑战。文中涵盖了从数据接入、特征工程、模型训练到部署上线的全流程,包括详细的代码示例和GUI设计,确保方案的可复现性和实用性。 适用人群:具备一定编程基础,尤其是熟悉MATLAB语言和机器学习算法的研发人员;从事电力系统调度、电力市场交易、新能源消纳等相关领域的工程师和技术专家。 使用场景及目标:①通过构建面向小时级别的滚动预测,输出高分辨率负荷轨迹,为日内与日前滚动调度提供边际成本最小化的依据;②在负荷高峰和供给紧张时,通过价格信号或直接负荷控制实施需求侧响应,提升削峰效率并抑制反弹;③为灵活性资源(调峰机组、储能、可中断负荷)提供更清晰的出清路径,降低弃风弃光率,提升系统整体清洁度;④帮助市场主体更准确地评估边际出清价格变化,提高报价成功率与收益稳定性,同时降低由预测偏差带来的风险敞口;⑤在运维与审计场景中,对预测产生的原因进行说明,保障业务侧与监管侧的可追溯性。 阅读建议:此资源不仅提供了完整的代码实现和GUI设计,更注重于理解GA优化过程中涉及到的数据处理、特征构造、模型选择及评估等核心步骤。因此,在学习过程中,建议结合实际案例进行实践,并深入研究每个阶段的具体实现细节,特别是适应度函数的设计、超参数空间的定义以及多样性维护机制的应用。此外,关注项目中关于数据对齐、缺失值处理、特征标准化等方面的最佳实践,有助于提高模型的鲁棒性和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值