Sorting It All Out
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 28766 | Accepted: 9965 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
Source
East Central North America 2001
题目链接:http://poj.org/problem?id=1094
题目大意:根据给出的点的大小关系,判断是否能够确定所有点构成的有序序列,不能输出在第几个关系后出现矛盾
题目分析:拓扑排序,排完后三种情况
1.图中存在环,则关系矛盾
2.图中不存在环,但排序出来的序列中元素个数小于总的元素个数,则序列不能够确定
3.图中不存在环,排序出的序列中元素个数等于总的元素个数,则序列被唯一确定
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
int const MAX = 30;
int m, n, len, mp[MAX][MAX], ind[MAX], tmp[MAX];
char seq[MAX], s[5];
bool determined, inconsistency;
int TopoSort() {
bool flag = false;
len = 0;
memcpy(tmp, ind, sizeof(ind));
queue <int> q;
for (int i = 0; i < n; i++) {
if (tmp[i] == 0) {
q.push(i);
}
}
while (!q.empty()) {
if (q.size() > 1) {
flag = true;
}
int u = q.front();
q.pop();
seq[len++] = u + 'A';
for (int v = 0; v < n; v++) {
if (mp[u][v]) {
tmp[v] --;
if (tmp[v] == 0) {
q.push(v);
}
}
}
}
if (len != n) {
return 1;
}
if(flag) {
return 2;
}
return 0;
}
void Init() {
determined = false;
inconsistency = false;
memset(mp, 0, sizeof(mp));
memset(ind, 0, sizeof(ind));
}
int main() {
while (scanf("%d %d", &n, &m) != EOF && m && n) {
Init();
for (int i = 1; i <= m; i++) {
scanf("%s", s);
if (!determined && !inconsistency) {
int x = s[0] - 'A';
int y = s[2] - 'A';
if(mp[y][x]) {
inconsistency = true;
printf("Inconsistency found after %d relations.\n", i);
continue;
}
if (!mp[x][y]) {
mp[x][y] = 1;
ind[y]++;
}
int res = TopoSort();
if (res == 0) {
seq[len] = '\0';
printf("Sorted sequence determined after %d relations: %s.\n", i, seq);
determined = true;
} else if (res == 1) {
printf("Inconsistency found after %d relations.\n", i);
inconsistency = true;
}
}
}
if (!determined && !inconsistency) {
printf("Sorted sequence cannot be determined.\n");
}
}
}

本文探讨了排序算法的基本概念及其在解决特定问题时的应用,重点介绍了拓扑排序技术如何帮助确定一组对象的有序序列,并通过实例展示了该技术在实际问题解决中的有效性。
1072

被折叠的 条评论
为什么被折叠?



