| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 7311 | Accepted: 4045 |
Description
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5
4 3
4 2
3 2
1 2
2 5
Sample Output
2
Source
题目链接:http://poj.org/problem?id=3660
题目大意:n个人m个关系,a b表示a胜b,问有多少人的名次确定
题目分析:先根据胜负关系建图,map[a][b]表示a名次在b之前,名次具有传递性,也就是如果a胜b,b胜c则a的名次一定在c之前,所以建图完跑一遍Floyd,然后根据点的度数,若度数为n-1,说明其他人与他的关系都确定,则他的名次就可以确定了
#include <cstdio>
#include <cstring>
int m, n, map[105][105], d[105];
void Floyd()
{
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
if(map[i][k] && map[k][j])
map[i][j] = 1;
}
void cal()
{
for(int i = 1; i<= n; i++)
{
for(int j = 1; j<= n; j++)
{
if(map[i][j])
{
d[i] ++;
d[j] ++;
}
}
}
}
int main()
{
int a, b, ans = 0;
memset(map, 0, sizeof(map));
memset(d, 0, sizeof(d));
scanf("%d %d", &n, &m);
for(int i = 0; i < m; i++)
{
scanf("%d %d", &a, &b);
map[a][b] = 1;
}
Floyd();
cal();
for(int i = 1; i <= n; i++)
if(d[i] == n - 1)
ans ++;
printf("%d\n", ans);
}

本文介绍了一道关于编程竞赛中牛的排名问题的算法题。通过建立胜负关系图,并运用Floyd算法,最终确定每头牛的排名。适用于了解图论及排名算法的读者。
5704

被折叠的 条评论
为什么被折叠?



