There is an undirected graph with n nodes, where each node is numbered between 0 and n - 1. You are given a 2D array graph, where graph[u] is an array of nodes that node u is adjacent to. More formally, for each v in graph[u], there is an undirected edge between node u and node v. The graph has the following properties:
- There are no self-edges (
graph[u]does not containu). - There are no parallel edges (
graph[u]does not contain duplicate values). - If
vis ingraph[u], thenuis ingraph[v](the graph is undirected). - The graph may not be connected, meaning there may be two nodes
uandvsuch that there is no path between them.
A graph is bipartite if the nodes can be partitioned into two independent sets A and B such that every edge in the graph connects a node in set A and a node in set B.
Return true if and only if it is bipartite.
Example 1:

Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]] Output: false Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.
Example 2:

Input: graph = [[1,3],[0,2],[1,3],[0,2]]
Output: true
Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.
Constraints:
graph.length == n1 <= n <= 1000 <= graph[u].length < n0 <= graph[u][i] <= n - 1graph[u]does not containu.- All the values of
graph[u]are unique. - If
graph[u]containsv, thengraph[v]containsu.
题目链接:https://leetcode.com/problems/is-graph-bipartite/
题目大意:给一个图(不一定连通)问能否将点分成两个集合,要求任意一条边的两个顶点分别在两个点集中
题目分析:经典染色题,对未染色的节点选择另一个颜色集进行染色,若发现一个冲突则不存在解
0ms,时间击败100%
class Solution {
boolean ok = true;
boolean[] color1;
boolean[] color2;
void dfs(int u, int[][] graph, int n) {
if (!ok) {
return;
}
for (int i = 0; i < graph[u].length; i++) {
int v = graph[u][i];
if (color1[u]) {
if (color1[v]) {
ok = false;
return;
}
if (color2[v]){
continue;
}
color2[v] = true;
} else if (color2[u]) {
if (color2[v]) {
ok = false;
return;
}
if (color1[v]) {
continue;
}
color1[v] = true;
}
if (ok) {
dfs(v, graph, n);
}
}
}
public boolean isBipartite(int[][] graph) {
int n = graph.length;
color1 = new boolean[n];
color2 = new boolean[n];
for (int i = 0; i < n; i++) {
if (!color1[i] && !color2[i]) {
Arrays.fill(color1, false);
Arrays.fill(color2, false);
color1[i] = true;
dfs(i, graph, n);
if (!ok) {
break;
}
}
}
return ok;
}
}

本文解析了如何通过深度优先搜索实现对给定无向图的二分性判断,讲解了经典的染色问题方法,展示了实例并探讨了其在LeetCode上的应用。了解如何检查图是否能被分为两个独立的集合,确保每条边连接不同集合的节点。

被折叠的 条评论
为什么被折叠?



