TJUOJ2470 RobotMaze

本文介绍了一种使用Java实现的迷宫寻路算法。通过BFS(宽度优先搜索)算法来寻找从起点到终点的最短路径。该算法考虑了迷宫中不同类型的格子,如障碍物、空地等,并利用队列数据结构进行状态更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class RobotMaze {

static int[][] maze;
static int[][] queue;
static boolean[][][] isD;
static int[][] dir = new int[][] { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 } };
static int head;
static int tail;
static int minstep;

public static void main(String[] args) throws FileNotFoundException {
    // TODO Auto-generated method stub
    Scanner sc = new Scanner(System.in);
    sc = new Scanner(new File("files/robotmaze"));
    int T = sc.nextInt();
    for (int t = 0; t < T; t++) {
        int M = sc.nextInt();
        int N = sc.nextInt();
        minstep = M * N * 3;
        isD = new boolean[M + 1][N + 1][4];
        maze = new int[M + 2][N + 2];
        queue = new int[M * N * 10][4];
        for (int i = 0; i < M + 2; i++) {
            maze[i][0] = 0;
            maze[i][N + 1] = 0;
        }
        for (int i = 0; i < N + 2; i++) {
            maze[0][i] = 0;
            maze[M + 1][i] = 0;
        }
        char[] tmpr;
        int sx = 0, sy = 0;
        for (int i = 1; i < M + 1; i++) {
            tmpr = sc.next().toCharArray();
            for (int j = 1; j < N + 1; j++) {
                if (tmpr[j - 1] == '#')
                    maze[i][j] = 0;
                else if (tmpr[j - 1] == '.')
                    maze[i][j] = 1;
                else if (tmpr[j - 1] == 'S') {
                    sx = i;
                    sy = j;
                    maze[i][j] = 2;
                } else {
                    maze[i][j] = -1;
                }
            }
        }
        head = 0;
        tail = 0;
        queue[tail++] = new int[] { sx, sy, 0, 0 };
        BFS2();
        if (minstep == M * N * 3)
            System.out.println(-1);
        else
            System.out.println(minstep);
    }
}

private static void BFS2() {
    // TODO Auto-generated method stub
    while (true) {
        if (head == tail)
            return;
        int x = queue[head][0];
        int y = queue[head][1];
        int step = queue[head][2];
        int pdir = queue[head][3];
        int nx, ny, ndir;
        for (int i = 1; i < 4; i++) {
            ndir = (pdir + i + 2) % 4;
            if (ndir == pdir) {
                isD[x][y][ndir] = true;
                nx = x + dir[ndir][0];
                ny = y + dir[ndir][1];
                if (maze[nx][ny] == 1) {
                    maze[nx][ny] = 2;
                    queue[tail++] = new int[] { nx, ny, step + 1, ndir };
                } else if (maze[nx][ny] == -1) {
                    minstep = step + 1;
                    return;
                }
            } else if (!isD[x][y][ndir]) {
                queue[tail++] = new int[] { x, y, step + 1, ndir };
            }
        }
        head++;
    }
}

}

sample input:
3
5 5
#####
#…#
#.#.#
#S#T#
#####
4 5
#.#.#
#.#.#
#S#T#
#####
100 100
S………………………………………………………………………………………
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
……………………………………………………………………………………….
………………………………………………………………………………………T

sample output:
8
-1
200

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值