1132 Cut Integer (20 point(s))
Cutting an integer means to cut a K digits lone integer Z into two integers of (K/2) digits long integers A and B. For example, after cutting Z = 167334, we have A = 167 and B = 334. It is interesting to see that Z can be devided by the product of A and B, as 167334 / (167 × 334) = 3. Given an integer Z, you are supposed to test if it is such an integer.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤ 20). Then N lines follow, each gives an integer Z (10 ≤ Z <231). It is guaranteed that the number of digits of Z is an even number.
Output Specification:
For each case, print a single line Yes if it is such a number, or No if not.
Sample Input:
3
167334
2333
12345678
Sample Output:
Yes
No
No
题目大意:每次输入一个数,如果这个数对半分开两个数相乘能被原来的数整除,那么输出yes反之no。
解题思路:就拆成两个数除一下,注意考虑出现某个数是0的情况。
#include<iostream>
#include<string.h>
#include<vector>
#include<algorithm>
#include<iomanip>
#include<time.h>
#include<math.h>
#include<set>
#include<list>
#include<climits>
#include<queue>
#include<cstring>
#include<map>
#include<stack>
#include<string>
using namespace std;
int main()
{
int N;
scanf("%d", &N);
while (N--) {
int b;
scanf("%d", &b);
string a = to_string(b);
bool flag = false;
string s1 = a.substr(0, a.size() / 2);
string s2 = a.substr(a.size() / 2);
if (atoi(s1.c_str())*atoi(s2.c_str()) != 0 && b % (atoi(s1.c_str())*atoi(s2.c_str())) == 0) {
flag = true;
}
if (flag)printf("Yes\n");
else
printf("No\n");
}
return 0;
}
1136 A Delayed Palindrome (20 point(s))
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 with 0≤ai<10 for all i and ak>0. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 and is also palindromic by definition.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )
Given any positive integer, you are supposed to find its paired palindromic number.
Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.
Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:
A + B = C
where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.
Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
题目大意:输入一个数将这个数正着倒着不断相加直到这个数是个回文的,如果10次还没回文,那就拉闸。
解题思路:模拟一下大数相加,没什么花头。
#include<iostream>
#include<string.h>
#include<vector>
#include<algorithm>
#include<iomanip>
#include<time.h>
#include<math.h>
#include<set>
#include<list>
#include<climits>
#include<queue>
#include<cstring>
#include<map>
#include<stack>
#include<string>
using namespace std;
bool judge(string a) {
string b = a;
reverse(b.begin(), b.end());
if (a == b)return true;
else
return false;
}
string add(string a) {
string res;
string b = a;
reverse(b.begin(), b.end());
int tot = 0;
for (int i = a.size()-1; i >=0; i--) {
int cur = (a[i] - '0') + (b[i] - '0')+tot;
res.push_back((cur % 10)+'0');
tot = cur / 10;
}
if (tot != 0) {
res.push_back(tot+'0');
}
reverse(res.begin(), res.end());
return res;
}
int main()
{
string a;
cin >> a;
bool flag = true;
for (int i = 0; i < 10; i++) {
if (!judge(a)) {
string b = a;
reverse(b.begin(), b.end());
cout << a << " + " << b << " = " << add(a) << endl;
a = add(a);
}
else {
flag = false;
cout << a << " is a palindromic number." << endl;
break;
}
}
if (flag) {
cout << "Not found in 10 iterations." << endl;
}
return 0;
}

本文介绍了解决两个数学问题的算法实现:一是判断一个整数是否可以被其一半位数的两个部分相乘整除;二是通过反复反转相加找到回文数,若10次内未找到则结束。
2624

被折叠的 条评论
为什么被折叠?



