nyoj: 301:
给你一个递推公式:
f(x)=a*f(x-2)+b*f(x-1)+c
并给你f(1),f(2)的值,请求出f(n)的值,由于f(n)的值可能过大,求出f(n)对1000007取模后的值。
输入数据有f(1),f(2),a,b,c,n求f(n)对1e9+7取余的值;
由于n的范围很大,所以此时就需要把递推式变成矩阵的形式;
所以直接矩阵快速:
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const long long N = 3;
const ll M = 1000007;
int f1, f2, a, b, c, n;
struct mat
{
int x,y;
ll arr[N][N];
mat()
{
x = 3, y = 3;
arr[0][0] = b, arr[0][1] = a, arr[0][2] = c;
arr[1][0] = 1, arr[1][1] = 0, arr[1][2] = 0;
arr[2][0] = 0, arr[2][1] = 0, arr[2][2] = 1;
}
};
mat mul(mat &A, mat &B)
{
mat C;
C.x = A.x, C.y = B.y;
for(int i=0; i<C.x; i++)
{
for(int j=0; j<C.y; j++)
{
C.arr[i][j] = 0;
for(int k=0; k<A.x; k++)
C.arr[i][j] =(C.arr[i][j] + A.arr[i][k] * B.arr[k][j] + M) % M;
}
}
return C;
}
mat pow(mat A, ll n)
{
mat B;
B.x = 1, B.y = 3;
B.arr[0][0] = f2, B.arr[1][0] = f1, B.arr[2][0] = 1;
while(n > 0)
{
if(n&1)
B = mul(A, B);
A = mul(A, A);
n >>= 1;
}
return B;
}
void solve()
{
scanf("%d%d%d%d%d%d", &f1, &f2, &a, &b, &c, &n);
if(n == 1)
{
printf("%d\n",f1);
return ;
}
mat A;
A = pow(A, n-2);
printf("%lld\n", A.arr[0][0]);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
solve();
}
return 0;
}
hduoj 5667:
fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwise
求fn对p取余后的值;
设:g(n)为f(n)的幂
由此式可知,f(n) = a^(b+c*g(n-1) +g(n-2));
将g(n) = c*g(n-1) + g(n-2) + b构建矩阵进行矩阵快速幂, 由费马小定理可知矩阵对(p-1)取余;
然后再进行快速幂运算,就可以了;
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const long long N = 3;
const ll M = 1000007;
long long a, b, c, p;
ll n;
struct mat
{
long long x,y;
ll arr[N][N];
};
long long gcd(long long a, long long b)
{
return b ? gcd(b, a % b) : a;
}
mat mul(mat &A, mat &B)
{
mat C;
C.x = A.x, C.y = B.y;
for(long long i=0; i<C.x; i++)
{
for(long long j=0; j<C.y; j++)
{
C.arr[i][j] = 0;
for(long long k=0; k<A.y; k++)
C.arr[i][j] =(C.arr[i][j] + A.arr[i][k] * B.arr[k][j]) % (p-1);
}
}
return C;
}
mat pow(mat A, ll n)
{
mat B;
B.x = 1, B.y = 3;
B.arr[0][0] = b, B.arr[1][0] = 0, B.arr[2][0] = b;
while(n > 0)
{
if(n&1)
B = mul(A, B);
A = mul(A, A);
n >>= 1;
}
return B;
}
long long mod_pow(long long a, long long n)
{
ll res = 1;
while(n > 0)
{
if(n & 1)
res = res * a % p;
a = a * a % p;
n >>= 1;
}
return res;
}
void solve()
{
scanf("%lld%lld%lld%lld%lld",&n, &a, &b, &c, &p);
if(a == 1)
{
printf("%lld\n",1);
return ;
}
long long t = gcd(a, p);
if(t != 1)
{
printf("%lld\n", 0);
return ;
}
mat A;
A.x = 3, A.y = 3;
A.arr[0][0] = c, A.arr[0][1] = 1, A.arr[0][2] = 1;
A.arr[1][0] = 1, A.arr[1][1] = 0, A.arr[1][2] = 0;
A.arr[2][0] = 0, A.arr[2][1] = 0, A.arr[2][2] = 1;
A = pow(A, n-2);
printf("%lld\n",mod_pow(a, A.arr[0][0]));
}
int main()
{
long long t;
scanf("%lld",&t);
while(t--)
{
solve();
}
return 0;
}
本文介绍了一种使用矩阵快速幂方法解决递归公式问题的技术,包括两个具体实例:一是在给定初始条件和参数的情况下,求解递归公式f(n)对特定数取模后的值;二是通过构建矩阵形式,利用费马小定理简化求解过程,最终实现高效求解。文章还提供了相应的代码示例,展示了如何将理论转化为实际编程应用。
2984

被折叠的 条评论
为什么被折叠?



