sklearn数据挖掘

https://www.cnblogs.com/jasonfreak/p/5448462.html

数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。 

  

       使用sklearn进行数据挖掘的核心:并行处理,流水线处理,自动化调参,持久化

       并行处理和流水线处理,将多个特征处理工作,甚至包括模型训练工作组合成一个工作(从代码的角度来说,即将多个对象组合成了一个对象)。在组合的前提下,自动化调参技术帮我们省去了人工调参的反锁。训练好的模型是贮存在内存中的数据,持久化能够将这些数据保存在文件系统中,之后使用时无需再进行训练,直接从文件系统中加载即可。

类或方法说明
sklearn.pipelinePipeline流水线处理
sklearn.pipelineFeatureUnion并行处理
sklearn.grid_searchGridSearchCV网格搜索调参
externals.joblibdump数据持久化
externals.joblibload从文件系统中加载数据至内存

  注意:组合和持久化都会涉及pickle技术,在sklearn的技术文档中有说明,将lambda定义的函数作为FunctionTransformer的自定义转换函数将不能pickle化。

from numpy import hstack, vstack, array, median, nan
from numpy.random import choice
from sklearn.datasets import load_iris

#特征矩阵加工
#使用vstack增加一行含缺失值的样本(nan, nan, nan, nan)
#使用hstack增加一列表示花的颜色(0-白、1-黄、2-红),花的颜色是随机的,意味着颜色并不影响花的分类
iris.data = hstack((choice([0, 1, 2], size=iris.data.shape[0]+1).reshape(-1,1), vstack((iris.data, array([nan, nan, nan, nan]).reshape(1,-1)))))
#目标值向量加工
#增加一个目标值,对应含缺失值的样本,值为众数
iris.target = hstack((iris.target, array([median(iris.target)])))

1 并行处理

  并行处理使得多个特征处理工作能够并行地进行。根据对特征矩阵的读取方式不同,可分为整体并行处理和部分并行理。 

  整体并行处理,即并行处理的每个工作的输入都是特征矩阵的整体;

  部分并行处理,即可定义每个工作需要输入的特征矩阵的列。

1.1 整体并行处理

  pipeline包提供了FeatureUnion类来进行整体并行处理:

from numpy import log1p
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer
from sklearn.pipeline import FeatureUnion

#新建将整体特征矩阵进行对数函数转换的对象
step2_1 = ('ToLog', FunctionTransformer(log1p))
#新建将整体特征矩阵进行二值化类的对象
step2_2 = ('ToBinary', Binarizer())
#新建整体并行处理对象
#该对象也有fit和transform方法,fit和transform方法均是并行地调用需要并行处理的对象的fit和transform方法
#参数transformer_list为需要并行处理的对象列表,该列表为二元组列表,第一元为对象的名称,第二元为对象
step2 = ('FeatureUnion', FeatureUnion(transformer_list=[step2_1, step2_2, step2_3]))

1.2 部分并行处理

  整体并行处理有其缺陷,在一些场景下,我们只需要对特征矩阵的某些列进行转换,而不是所有列。pipeline并没有提供相应的类(仅OneHotEncoder类实现了该功能),需要我们在FeatureUnion的基础上进行优化:

from sklearn.pipeline import FeatureUnion, _fit_one_transformer, _fit_transform_one, _transform_one 
from sklearn.externals.joblib import Parallel, delayed
from scipy import sparse
import numpy as np

#部分并行处理,继承FeatureUnion
class FeatureUnionExt(FeatureUnion):
    #相比FeatureUnion,多了idx_list参数,其表示每个并行工作需要读取的特征矩阵的列
    def __init__(self, transformer_list, idx_list, n_jobs=1, transformer_weights=None):
        self.idx_list = idx_list
        FeatureUnion.__init__(self, transformer_list=map(lambda trans:(trans[0], trans[1]), transformer_list), n_jobs=n_jobs, transformer_weights=transformer_weights)

    #由于只部分读取特征矩阵,方法fit需要重构
    def fit(self, X, y=None):
        transformer_idx_list = map(lambda trans, idx:(trans[0], trans[1], idx), self.transformer_list, self.idx_list)
        transformers = Parallel(n_jobs=self.n_jobs)(
            #从特征矩阵中提取部分输入fit方法
            delayed(_fit_one_transformer)(trans, X[:,idx], y)
            for name, trans, idx in transformer_idx_list)
        self._update_transformer_list(transformers)
        return self

    #由于只部分读取特征矩阵,方法fit_transform需要重构
    def fit_transform(self, X, y=None, **fit_params):
        transformer_idx_list = map(lambda trans, idx:(trans[0], trans[1], idx), self.transformer_list, self.idx_list)
        result = Parallel(n_jobs=self.n_jobs)(
            #从特征矩阵中提取部分输入fit_transform方法
            delayed(_fit_transform_one)(trans, name, X[:,idx], y,
                                        self.transformer_weights, **fit_params)
            for name, trans, idx in transformer_idx_list)

        Xs, transformers = zip(*result)
        self._update_transformer_list(transformers)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    #由于只部分读取特征矩阵,方法transform需要重构
    def transform(self, X):
        transformer_idx_list = map(lambda trans, idx:(trans[0], trans[1], idx), self.transformer_list, self.idx_list)
        Xs = Parallel(n_jobs=self.n_jobs)(
            #从特征矩阵中提取部分输入transform方法
            delayed(_transform_one)(trans, name, X[:,idx], self.transformer_weights)
            for name, trans, idx in transformer_idx_list)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

在本文提出的场景中,我们对特征矩阵的第1列(花的颜色)进行定性特征编码,对第2、3、4列进行对数函数转换,对第5列进行定量特征二值化处理。使用FeatureUnionExt类进行部分并行处理的代码如下:

from numpy import log1p
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer

#新建将部分特征矩阵进行定性特征编码的对象
step2_1 = ('OneHotEncoder', OneHotEncoder(sparse=False))
#新建将部分特征矩阵进行对数函数转换的对象
step2_2 = ('ToLog', FunctionTransformer(log1p))
#新建将部分特征矩阵进行二值化类的对象
step2_3 = ('ToBinary', Binarizer())
#新建部分并行处理对象
#参数transformer_list为需要并行处理的对象列表,该列表为二元组列表,第一元为对象的名称,第二元为对象
#参数idx_list为相应的需要读取的特征矩阵的列
step2 = ('FeatureUnionExt', FeatureUnionExt(transformer_list=[step2_1, step2_2, step2_3], idx_list=[[0], [1, 2, 3], [4]]))

2 流水线处理

  pipeline包提供了Pipeline类来进行流水线处理。流水线上除最后一个工作以外,其他都要执行fit_transform方法,且上一个工作输出作为下一个工作的输入。最后一个工作必须实现fit方法,输入为上一个工作的输出;但是不限定一定有transform方法,因为流水线的最后一个工作可能是训练!

  根据本文提出的场景,结合并行处理,构建完整的流水线的代码如下:

from numpy import log1p
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

#新建计算缺失值的对象
step1 = ('Imputer', Imputer())
#新建将部分特征矩阵进行定性特征编码的对象
step2_1 = ('OneHotEncoder', OneHotEncoder(sparse=False))
#新建将部分特征矩阵进行对数函数转换的对象
step2_2 = ('ToLog', FunctionTransformer(log1p))
#新建将部分特征矩阵进行二值化类的对象
step2_3 = ('ToBinary', Binarizer())
#新建部分并行处理对象,返回值为每个并行工作的输出的合并
step2 = ('FeatureUnionExt', FeatureUnionExt(transformer_list=[step2_1, step2_2, step2_3], idx_list=[[0], [1, 2, 3], [4]]))
#新建无量纲化对象
step3 = ('MinMaxScaler', MinMaxScaler())
#新建卡方校验选择特征的对象
step4 = ('SelectKBest', SelectKBest(chi2, k=3))
#新建PCA降维的对象
step5 = ('PCA', PCA(n_components=2))
#新建逻辑回归的对象,其为待训练的模型作为流水线的最后一步
step6 = ('LogisticRegression', LogisticRegression(penalty='l2'))
#新建流水线处理对象
#参数steps为需要流水线处理的对象列表,该列表为二元组列表,第一元为对象的名称,第二元为对象
pipeline = Pipeline(steps=[step1, step2, step3, step4, step5, step6])

3 自动化调参

  网格搜索为自动化调参的常见技术之一,grid_search包提供了自动化调参的工具,包括GridSearchCV类。对组合好的对象进行训练以及调参的代码如下:

from sklearn.grid_search import GridSearchCV

#新建网格搜索对象
#第一参数为待训练的模型
 #param_grid为待调参数组成的网格,字典格式,键为参数名称(格式“对象名称__子对象名称__参数名称”),值为可取的参数值列表
 grid_search = GridSearchCV(pipeline, param_grid={'FeatureUnionExt__ToBinary__threshold':[1.0, 2.0, 3.0, 4.0], 'LogisticRegression__C':[0.1, 0.2, 0.4, 0.8]})
#训练以及调参
grid_search.fit(iris.data, iris.target)

4 持久化

  externals.joblib包提供了dump和load方法来持久化和加载内存数据:

#持久化数据
#第一个参数为内存中的对象
#第二个参数为保存在文件系统中的名称
#第三个参数为压缩级别,0为不压缩,3为合适的压缩级别
dump(grid_search, 'grid_search.dmp', compress=3)
#从文件系统中加载数据到内存中
grid_search = load('grid_search.dmp')

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值