1009 Product of Polynomials (25 分)

本文详细介绍了一种解决多项式乘法问题的高效算法。通过输入两个多项式的非零项,算法能准确计算并输出其乘积,结果精确到小数点后一位。示例输入与输出展示了算法的具体应用,代码实现部分使用C++语言,涵盖了输入处理、乘法运算及输出格式的完整流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This time, you are supposed to find A×B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:

KKK N1N_1N​1​​ aN1a_{N_1}a​N​1​​​​ N2N_2N​2​​ aN2a_{N_2}a​N​2​​​​ ... NKN_KN​K​​ aNKa_{N_K}a​N​K​​​​

where KKK is the number of nonzero terms in the polynomial, NiN_iN​i​​ and aNia_{N_i}a​N​i​​​​ (i=1,2,⋯,Ki=1, 2, \cdots , Ki=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤101\le K \le 101≤K≤10, 0≤NK<⋯<N2<N1≤10000 \le N_K < \cdots < N_2 < N_1 \le 10000≤N​K​​<⋯<N​2​​<N​1​​≤1000.

Output Specification:

For each test case you should output the product of AAA and BBB in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:

3 3 3.6 2 6.0 1 1.6

注意事项:系数相乘后最大可以为2000

代码如下:

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int K[2], N[2][1001];
	float a[2][1001];
	memset(a, 0, sizeof(a));
	for (int p = 0; p < 2; p++)
	{
		cin >> K[p];
		for (int q = 0; q < K[p]; q++)
			cin >> N[p][q] >> a[p][q];
	}

	float resN[2001] = { 0 };
	for (int i = 0; i < K[0]; i++)
	{
		for (int j = 0; j < K[1]; j++)
		{
			resN[N[0][i] + N[1][j]] += a[0][i] * a[1][j];
		}
	}

	int sum = 0;
	for (int k = 0; k <= 2000; k++)
	{
		if (resN[k])sum++;
	}
	cout << sum;
	for (int l = 2000; l >= 0; l--)
	{
		if (resN[l])
			printf(" %d %.1f", l, resN[l]);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值