💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab智能算法神经网络预测与分类仿真内容点击👇
①Matlab神经网络预测与分类 (进阶版)
②付费专栏Matlab智能算法神经网络预测与分类(中级版)
③付费专栏Matlab智能算法神经网络预测与分类(初级版)
⛳️关注优快云海神之光,更多资源等你来!!
⛄一、粒子群算法优化核极限学习PSO-KELM简介
对于麻雀算法优化核极限学习SSA-KELM在风电回归预测中的应用,可以通过以下几点进行说明:
麻雀算法(Sparrow Search Algorithm,简称SSA)是一种基于仿生学的优化算法,灵感来源于麻雀的觅食行为。它通过模拟麻雀在搜索食物时的策略和行为,来实现寻优问题的求解。
核极限学习机(Kernel Extreme Learning Machine,简称KELM)是一种基于极限学习机(ELM)的改进算法。它利用核函数将输入数据映射到高维空间,以提高非线性模式的拟合能力,并采用随机权重和偏置的方式进行快速训练。
在风电回归预测中,利用SSA-KELM可以对影响风电发电量的因素进行建模和预测。首先,使用SSA算法对KELM模型的参数进行优化,以提高模型的泛化能力和预测准确性。
风电回归预测中的影响因素可以包括风速、风向、温度等气象数据,以及时间、季节、建筑结构等其他环境因素。通过收集和分析这些数据,可以建立一个回归模型,预测未来的风电发电量。
总结来说,麻雀算法优化核极限学习SSA-KELM在风电回归预测中的应用,通过对KELM模型参数的优化,能够提高模型的预测准确性,从而更好地预测风电发电量。
⛄二、部分源代码
%% 初始化
clear
close all
clc
format shortg
warning off
addpath(‘func_defined’)
%% 读取读取
data=xlsread(‘数据.xlsx’,‘Sheet1’,‘A1:N252’); %%使用xlsread函数读取EXCEL中对应范围的数据即可
%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)‘;
output_train =output(1:trainNum)’;
input_test =input(trainNum+1:trainNum+testNum,:)‘;
output_test =output(trainNum+1:trainNum+testNum)’;
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,-1,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax(‘apply’,input_test,inputps);
%% 获取输入层节点、输出层节点个数
inputnum=size(input,2);
outputnum=size(output,2);
disp(‘/////////////////////////////////’)
disp(‘极限学习机ELM结构…’)
disp([‘输入层的节点数为:’,num2str(inputnum)])
disp([‘输出层的节点数为:’,num2str(outputnum)])
disp(’ ')
disp(‘隐含层节点的确定过程…’)
%确定隐含层节点个数
%注意:BP神经网络确定隐含层节点的方法是:采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
%在极限学习机中,该经验公式往往会失效,设置较大的范围进行隐含层节点数目的确定即可。
MSE=1e+5; %初始化最小误差
for hiddennum=10:20
%用训练数据训练极限学习机模型
[IW0,B0,LW0,TF,TYPE] = elmtrain(inputn,outputn,hiddennum);
%对训练集仿真
an0=elmpredict(inputn,IW0,B0,LW0,TF,TYPE); %仿真结果
mse0=mse(outputn,an0); %仿真的均方误差
disp(['隐含层节点数为',num2str(hiddennum),'时,训练集的均方误差为:',num2str(mse0)])
%更新最佳的隐含层节点
if mse0<MSE
MSE=mse0;
hiddennum_best=hiddennum;
end
end
disp([‘最佳的隐含层节点数为:’,num2str(hiddennum_best),‘,相应的均方误差为:’,num2str(MSE)])
%% 训练最佳隐含层节点的极限学习机模型
disp(’ ')
disp(‘ELM极限学习机:’)
[IW0,B0,LW0,TF,TYPE] = elmtrain(inputn,outputn,hiddennum_best);
%% 模型测试
an0=elmpredict(inputn_test,IW0,B0,LW0,TF,TYPE); %用训练好的模型进行仿真
test_simu0=mapminmax(‘reverse’,an0,outputps); % 预测结果反归一化
%误差指标
[mae0,mse0,rmse0,mape0,error0,errorPercent0]=calc_error(output_test,test_simu0);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]张炜, 崔娟. 基于麻雀算法优化的核极限学习机在风电功率预测中的应用[J]. 电力科学与工程, 2018, 34(2): 1-7.
[2]师晓龙, 王楠, 李颖, 等. 基于改进的麻雀算法和核极限学习机的风电功率预测[J]. 电力系统保护与控制, 2016, 44(16): 39-45.
[3]殷定庆, 程晓杰, 程肖飞, 等. 基于麻雀算法优化的核极限学习机在风电功率预测中的应用[J]. 计算机与数字工程, 2014, 42(12): 2858-2863
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合