#include "uv.h"
#include "uv-common.h"
#include "heap-inl.h"
#include <assert.h>
#include <limits.h>
// 取出loop中的计时器堆指针
static struct heap *timer_heap(const uv_loop_t* loop) {
#ifdef _WIN32
return (struct heap*) loop->timer_heap;
#else
return (struct heap*) &loop->timer_heap;
#endif
}
static int timer_less_than(const struct heap_node* ha,
const struct heap_node* hb) {
const uv_timer_t* a;
const uv_timer_t* b;
// 通过结构体成员找到结构体首地址
a = container_of(ha, uv_timer_t, heap_node);
b = container_of(hb, uv_timer_t, heap_node);
// 比较两个结构体中的超时时间
if (a->timeout < b->timeout)
return 1;
if (b->timeout < a->timeout)
return 0;
/* Compare start_id when both have the same timeout. start_id is
* allocated with loop->timer_counter in uv_timer_start().
*/
// 超时时间一样的话,看谁先创建
if (a->start_id < b->start_id)
return 1;
if (b->start_id < a->start_id)
return 0;
return 0;
}
// 初始化uv_timer_t结构体
int uv_timer_init(uv_loop_t* loop, uv_timer_t* handle) {
uv__handle_init(loop, (uv_handle_t*)handle, UV_TIMER);
handle->timer_cb = NULL;
handle->repeat = 0;
return 0;
}
// 启动一个计时器
int uv_timer_start(uv_timer_t* handle,
uv_timer_cb cb,
uint64_t timeout,
uint64_t repeat) {
uint64_t clamped_timeout;
if (cb == NULL)
return UV_EINVAL;
// 重新执行start的时候先把之前的停掉
if (uv__is_active(handle))
uv_timer_stop(handle);
// 超时时间,为绝对值
clamped_timeout = handle->loop->time + timeout;
if (clamped_timeout < timeout)
clamped_timeout = (uint64_t) -1;
// 初始化回调,超时时间,是否重复计时,赋予一个独立无二的id
handle->timer_cb = cb;
handle->timeout = clamped_timeout;
handle->repeat = repeat;
/* start_id is the second index to be compared in uv__timer_cmp() */
handle->start_id = handle->loop->timer_counter++;
// 插入最小堆
heap_insert(timer_heap(handle->loop),
(struct heap_node*) &handle->heap_node,
timer_less_than);
// 激活该handle
uv__handle_start(handle);
return 0;
}
// 停止一个计时器
int uv_timer_stop(uv_timer_t* handle) {
if (!uv__is_active(handle))
return 0;
// 从最小堆中移除该计时器节点
heap_remove(timer_heap(handle->loop),
(struct heap_node*) &handle->heap_node,
timer_less_than);
// 清除激活状态和handle的active数减一
uv__handle_stop(handle);
return 0;
}
// 重新启动一个计时器,需要设置repeat标记
int uv_timer_again(uv_timer_t* handle) {
if (handle->timer_cb == NULL)
return UV_EINVAL;
// 如果设置了repeat标记说明计时器是需要重复触发的
if (handle->repeat) {
// 先把旧的计时器节点从最小堆中移除,然后再重新开启一个计时器
uv_timer_stop(handle);
uv_timer_start(handle, handle->timer_cb, handle->repeat, handle->repeat);
}
return 0;
}
void uv_timer_set_repeat(uv_timer_t* handle, uint64_t repeat) {
handle->repeat = repeat;
}
uint64_t uv_timer_get_repeat(const uv_timer_t* handle) {
return handle->repeat;
}
// 计算最小堆中最小节点的超时时间,即最小的超时时间
int uv__next_timeout(const uv_loop_t* loop) {
const struct heap_node* heap_node;
const uv_timer_t* handle;
uint64_t diff;
// 取出堆的根节点,即超时时间最小的
heap_node = heap_min(timer_heap(loop));
if (heap_node == NULL)
return -1; /* block indefinitely */
handle = container_of(heap_node, uv_timer_t, heap_node);
// 如果最小的超时时间小于当前时间,则返回0,说明已经超时
if (handle->timeout <= loop->time)
return 0;
// 否则计算还有多久超时,返回给epoll,epoll的timeout不能大于diff
diff = handle->timeout - loop->time;
if (diff > INT_MAX)
diff = INT_MAX;
return diff;
}
// 找出已经超时的节点,并且执行里面的回调
void uv__run_timers(uv_loop_t* loop) {
struct heap_node* heap_node;
uv_timer_t* handle;
for (;;) {
heap_node = heap_min(timer_heap(loop));
if (heap_node == NULL)
break;
handle = container_of(heap_node, uv_timer_t, heap_node);
// 如果当前节点的时间大于当前时间则返回,说明后面的节点也没有超时
if (handle->timeout > loop->time)
break;
// 移除该计时器节点,重新插入最小堆,如果设置了repeat的话
uv_timer_stop(handle);
uv_timer_again(handle);
// 执行超时回调
handle->timer_cb(handle);
}
}
void uv__timer_close(uv_timer_t* handle) {
uv_timer_stop(handle);
}