CIFAR-10 图片识别

"""
Copyright 2022 The TBAALi Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

"""
 @Author: TBAALi
 @Email: jiaxx903@foxmail.com
 @FileName: CIFAR-10-Classfication.py
 @DateTime: 5/19/22 9:48 PM
 @SoftWare: PyCharm
 @Copyright: Copyright (C) 2022 TBAALi
"""

# CIFAR-10 数据集由 10 个类的 60000 个 32 X 32 彩色图像组成,
# 每个类由 6000 个图像,有 50000 个训练图像和 10000 个测试图像

# 导入数据及下载数据

import torch
import torchvision
import torchvision.transforms as transforms

import matplotlib.pyplot as plt
import numpy as np

import torch.nn as nn
import torch.nn.functional as F


transform = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5),
                             (0.5, 0.5, 0.5))
    ]
)

trainset = torchvision.datasets.CIFAR10(
    root = './data',
    train = True,
    download = False,
    transform = transform
)

trainloader = torch.utils.data.DataLoader(
    trainset,
    batch_size = 4,
    shuffle = True,
    num_workers = 2
)

testset = torchvision.datasets.CIFAR10(
    root = './data',
    train = False,
    download = False,
    transform = transform
)

testloader = torch.utils.data.DataLoader(
    testset,
    batch_size = 4,
    shuffle = False,
    num_workers = 2
)

classes = ('plane', 'car', 'brid', 'cat',
           'deer', 'dog',
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值