机器学习之——自动求导

本文介绍了深度学习中自动求导的概念,包括数值微分、符号微分、前向模式和反向模式。自动求导使得模型训练更为便捷,数值微分适合梯度检查,符号微分适用于符号表达式,前向模式利用二元数求导,反向模式在深度学习中广泛使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:叶虎

小编:张欢

随机梯度下降法(SGD)是训练深度学习模型最常用的优化方法。在前期文章中我们讲了梯度是如何计算的,主要采用BP算法,或者说利用链式法则。但是深度学习模型是复杂多样的,你不大可能每次都要自己使用链式法则去计算梯度,然后采用硬编程的方式实现。

而目前的深度学习框架其都是实现了自动求梯度的功能,你只关注模型架构的设计,而不必关注模型背后的梯度是如何计算的。不过,我们还是想说一说自动求导是如何实现的。

这里我们会讲几种常见的方法,包括数值微分(Numerical Differentiation),符号微分(Symbolic Differentiation),前向模式(Forward Mode)和反向模式(Reverse Mode)


数值微分

        数值微分方式应该是最直接而且简单的一种自动求导方式。从导数的定义中,我们可以直观看到:


       

h接近0时,导数是可以近似计算出来的。可以看到上面的计算式几乎适用所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值