图像灰度处理、图像合并(hstack)
代码只需:
① 修改图片1 路径
② 修改图片2 路径
③ 修改保存目录
④ 修改图片名称(带扩展名)
import cv2
import numpy as np
import os
ar_img1_hwc = cv2.imread('000000000872.jpg', cv2.IMREAD_COLOR) # ---- 改 ①
ar_img2_hwc = cv2.imread('000000002431.jpg', cv2.IMREAD_COLOR) # ---- 改 ②
# 三维ndarray,分别代表行、列、通道(BGR),数组形状(高度,宽度,通道数)
cv2.namedWindow('test4.4_window', cv2.WINDOW_NORMAL) # 显示窗口
cv2.imshow('test4.4_p1', ar_img1_hwc) # 窗口内显示图像
# cv2.imshow('test4.4_p2',ar_img2_hwc) # 窗口内显示图像
cv2.waitKey(0) # 等待用户按任意键关闭窗口
cv2.destroyAllWindows() # 关闭窗口
# 将图片转为灰度图
def get_gray(imag):
row, column, channel = imag.shape
for i in range(0, row):
for j in range(0, column):
blueComponent = imag[i][j][0]
greenComponent = imag[i][j][1]
redComponent = imag[i][j][2]
grayValue = 0.114 * blueComponent + 0.587 * greenComponent + 0.299 * redComponent
imag[i][j] = grayValue
return imag
img1_gray = ar_img1_hwc
get_gray(img1_gray)
img2_gray = ar_img2_hwc
get_gray(img2_gray)
cv2.imshow("img1_gray", img1_gray)
cv2.waitKey(0) # 等待用户按任意键关闭窗口
cv2.destroyAllWindows() # 关闭窗口
# 按水平方向合并这两张灰度图片
merge_p3 = np.hstack((img1_gray, img2_gray))
cv2.imshow("合并灰度图.jpg", merge_p3)
# 保存图片
img_file = "D:/pic" # ---- 改 ③
if not os.path.exists(img_file):
os.mkdir(img_file)
cv2.imwrite(img_file + "/" + "merge_p3.jpg", merge_p3) # ---- 改 ④
cv2.waitKey(0) # 等待用户按任意键关闭窗口
cv2.destroyAllWindows() # 关闭窗口
# #将图片转为灰度图2
# img1_gray = cv2.cvtColor(ar_img1_hwc,cv2.COLOR_RGB2GRAY)
# img2_gray = cv2.cvtColor(ar_img2_hwc,cv2.COLOR_RGB2GRAY)
#
# cv2.imshow("img1_gray",img1_gray)
# cv2.imshow("img2_gray",img2_gray)
#
# print("img_gray shape:{}".format(np.shape(img1_gray)))
#
# cv2.waitKey()
34

被折叠的 条评论
为什么被折叠?



