使用 trie tree 实现 auto-completion

本文介绍了一种使用内存Trie数据结构实现自动补全功能的方法。Trie是一种特殊的数据结构,能够有效地存储和检索字符串集合。通过递归地构建Trie节点,可以快速匹配前缀并找到所有可能的字符串完成选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In-Memory Trie

Tries are specialized data structures where a word can be stored as a sequence of characters. Reading the word involves traversing down the branch of the tree. At each node, the possible completions of the partial word can be found by traversing down all possible paths to the leaf level. It seemed ideal for modeling auto-completions, which is why I chose it. A Trie is modelled as a collection of TrieNode objects. A TrieNode is basically the current character and a Map of completions. Here is the code:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Trie.java
public class Trie {

  private TrieNode rootNode;

  public Trie() {
    super();
    rootNode = new TrieNode(' ');
  }

  public void load(String phrase) {
    loadRecursive(rootNode, phrase + "$");
  }

  private void loadRecursive(TrieNode node, String phrase) {
    if (StringUtils.isBlank(phrase)) {
      return;
    }
    char firstChar = phrase.charAt(0);
    node.add(firstChar);
    TrieNode childNode = node.getChildNode(firstChar);
    if (childNode != null) {
      loadRecursive(childNode, phrase.substring(1));
    }
  }

  public boolean matchPrefix(String prefix) {
    TrieNode matchedNode = matchPrefixRecursive(rootNode, prefix);
    return (matchedNode != null);
  }

  private TrieNode matchPrefixRecursive(TrieNode node, String prefix) {
    if (StringUtils.isBlank(prefix)) {
      return node;
    }
    char firstChar = prefix.charAt(0);
    TrieNode childNode = node.getChildNode(firstChar);
    if (childNode == null) {
      // no match at this char, exit
      return null;
    } else {
      // go deeper
      return matchPrefixRecursive(childNode, prefix.substring(1));
    }
  }

  public List<String> findCompletions(String prefix) {
    TrieNode matchedNode = matchPrefixRecursive(rootNode, prefix);
    List<String> completions = new ArrayList<String>();
    findCompletionsRecursive(matchedNode, prefix, completions);
    return completions;
  }

  private void findCompletionsRecursive(TrieNode node, String prefix, List<String> completions) {
    if (node == null) {
      // our prefix did not match anything, just return
      return;
    }
    if (node.getNodeValue() == '$') {
      // end reached, append prefix into completions list. Do not append
      // the trailing $, that is only to distinguish words like ann and anne
      // into separate branches of the tree.
      completions.add(prefix.substring(0, prefix.length() - 1));
      return;
    }
    Collection<TrieNode> childNodes = node.getChildren();
    for (TrieNode childNode : childNodes) {
      char childChar = childNode.getNodeValue();
      findCompletionsRecursive(childNode, prefix + childChar, completions);
    }
  }

  public String toString() {
    return "Trie:" + rootNode.toString();
  }
}

// TrieNode.java
public class TrieNode {

  private Character character;
  private HashMap<Character,TrieNode> children;

  public TrieNode(char c) {
    super();
    this.character = new Character(c);
    children = new HashMap<Character,TrieNode>();
  }

  public char getNodeValue() {
    return character.charValue();
  }

  public Collection<TrieNode> getChildren() {
    return children.values();
  }

  public Set<Character> getChildrenNodeValues() {
    return children.keySet();
  }

  public void add(char c) {
    if (children.get(new Character(c)) == null) {
      // children does not contain c, add a TrieNode
      children.put(new Character(c), new TrieNode(c));
    }
  }

  public TrieNode getChildNode(char c) {
    return children.get(new Character(c));
  }

  public boolean contains(char c) {
    return (children.get(new Character(c)) != null);
  }

  public int hashCode() {
    return character.hashCode();
  }

  public boolean equals(Object obj) {
    if (!(obj instanceof TrieNode)) {
      return false;
    }
    TrieNode that = (TrieNode) obj;
    return (this.getNodeValue() == that.getNodeValue());
  }

  public String toString() {
    return ReflectionToStringBuilder.reflectionToString(this, ToStringStyle.DEFAULT_STYLE);
  }
}
内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值