均值,白化,Siamese网络,双线性插值

本文介绍了均值白化和双线性插值在图像预处理中的作用,以加速模型训练和提升效果。同时探讨了Siamese网络在类别样本数量少时的分类优势,它通过学习相似性度量解决小样本分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

减去均值,白化:在训练一个网络的时候我们经常会做对输入减去均值,以及白化等操作,其目的均是为了加快训练速度。关于原因一般我们输入的图像数据是高度相关的,假设其分布如下图a所示,由于初始化模型参数时,一般参数时0均值的,因此开始的拟合y=Wx+b基本是过原点的,如图b红色线所示,因此网络需要经过多次学习才能够达到如紫色实现的拟合,因此训练过程中模型的收敛速度慢。如果我们对输入的数据先做减均值操作,便可以将其分布得到如图c所示的样子,这显然可以加快模型的收敛速度。更进一步如果通过白化等预处理操作对数据进行去相关操作使其分布如图d所示,显然数据的区分度更大,同样也也可以加快训练。

这里写图片描述

Siamese网络:Siamese网络是一种相似性度量方法,当类别数多,但每个类别的样本数量少的情况下可用于类别的识别、分类等。传统的用于区分的分类方法是需要确切的知道每个样本属于哪个类,需要针对每个样本有确切的标签。而且相对来说标签的数量是不会太多的。当类别数量过多,每个类别的样本数量又相对较少的情况下,这些方法就不那么适用了。其实也很好理解,对于整个数据集来说,我们的数据量是有的,但是对于每个类别来说,可以只有几个样本,那么用分类算法去做的话,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值