论文笔记7:Feature Extraction and Selection of Sentinel-1 Dual-Pol Data for Global-Scale

本文探讨了使用Sentinel-1双极化数据进行全球范围内本地气候区域分类的挑战,特别是在不同城市间知识转移的困难。研究发现,随机森林算法在不同城市间直接应用时,准确率大幅下降,强调了模型泛化能力的重要性。文章介绍了SentinelSat和SNAP两个开源工具,分别用于搜索、下载Sentinel卫星图像及其元数据。

Feature Extraction and Selection of Sentinel-1 Dual-Pol Data for Global-Scale Local Climate Zone Classification

However, this is a challenging task. For example, one study [20] attempted to
select training samples from one city for the classification of another city using RF. The classification accuracies dropped to 18.2%, which indicates that the knowledge transferability between different cities should be carefully considered.

develop a classifier with adequate generalization capability to be applied to any other cities

在这里插入图片描述
An open-source toolbox, named SentinelSat (https://github.com/sentinelsat/sentinelsat), provides the utilities of searching, downloading, and retrieving the metadata of Sentinel satellite images.
Sentinel Application Platform (SNAP, https://step.esa.int/main/toolboxes/snap/)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值