转载自:http://blog.unieagle.net/2012/10/16/leetcode%E9%A2%98%E7%9B%AE%EF%BC%9Apermutation-sequence/
这道题其实有很强的规律可循。首先,n个元素的排列总数是n!。在下面的分析中,让k的范围是0 <= k < n!。(题目代码实际上是1<=k<=n!)
可以看到一个规律,就是这n!个排列中,第一位的元素总是(n-1)!一组出现的,也就说如果p = k / (n-1)!,那么排列的最开始一个元素一定是arr[p]。
这个规律可以类推下去,在剩余的n-1个元素中逐渐挑选出第二个,第三个,...,到第n个元素。程序就结束。
题目描述:Permutation Sequence
The set [1,2,3,…,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
“123″
“132″
“213″
“231″
“312″
“321″
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
代码:20ms过大集合。
class Solution { public: string getPermutation(int n, int k) { char *arr = new char[n]; int pro = 1; for(int i = 0 ; i < n; ++i) { arr[i] = '1' + i; pro *= (i + 1); } k = k - 1; k %= pro; pro /= n;//pro = 1 * 2 * ... * (n-1) for(int i = 0 ; i < n-1; ++i) { //for index i int selectI = k / pro; k = k % pro; pro /= (n - i - 1); int temp = arr[selectI + i]; for(int j = selectI; j > 0; --j) arr[i + j] = arr[i + j - 1]; arr[i] = temp; } return string(arr, arr + n); }