Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
题目大意:
就是一条寻路的问题,下标为0的,只能跳到下一行下标为0或1的元素。下标为1的只能跳到下一行下标为1或2的元素,以此类推。
题目说的并不清楚,应该给多两个列子。
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
int N = triangle[triangle.size()-1].size();
int *path = new int[N];
vector<int> ivec;
ivec = triangle[triangle.size()-1];
for (int i = 0;i < N;i ++)
{
path[i] = ivec[i];
}
for (int i = N-2;i >= 0;i --)
{
ivec = triangle[i];
for (int j = 0;j < triangle[i].size();j ++)
{
path[j] = mymin(ivec[j]+path[j],ivec[j]+path[j+1]);
}
}
return path[0];
}
int mymin(int a,int b)
{
return a>b?b:a;
}
};