线性筛实践

线性筛(欧拉筛)

使用范围:得到[2…N]之间所以素数

    说实话埃氏筛已经足够优秀,能基本做到o(n),但欧式筛才是真正的线性筛且能在筛出质数的同时运算欧拉函数和莫比乌斯函数这两个积性函数的运算,实用于处理数论问题。

欧拉筛拆解分析

(一)初始化

int n,pn=0;//
int num[maxl], prim[maxl],phi[maxl],mob[maxl];

其中

  1. num[x]值域为[-1,0],表示数x是否为素数(-1)
  2. prim[x]记录筛出的第x+1项素数
  3. phi[x],mob[x]分别记录欧拉函数和莫比乌斯函数的值

(二)第一重循环

for (int i = 2; i < n; ++i) 

    i有双重含义,既表示当前指向的应该拿去判断是否为素数的数有点拗口,又表示筛数的乘子(后文会解释)

(三)判别素数

if (num[i]) {
	prim[pn++] = i;
	phi[i] = i - 1;
	mob[i] = -1;
}

    只要num[i]是-1就代表没被筛除是素数,这里同时写了欧拉函数和莫比乌斯函数的值。

(四)第二重循环

for (int j = 0; j < pn && i * prim[j] < n; ++j) 

    将之前筛出的素数的i倍筛除美滋滋

(五)具体筛除操作,很关键

if (i % prim[j] == 0) {
	num[i * prim[j]] = 0;
	//mob[i * prim[j]] = 0;//莫比乌斯函数
	//phi[i * prim[j]] = phi[i] * prim[j];//欧拉函数
	break;
	}
num[i * prim[j]] = 0;
//mob[i * prim[j]] = -mob[i];
//phi[i * prim[j]] = phi[i] * (prim[j] - 1);

    为什么要i%prim[j]==0就break呢,因为如果i已经包含了prim[j]这个素因子,那么用筛去i*prim[k] (k>j) 就没必要了,因为可以用i增大后乘以prim[j] 来代替,这步操作真正做到了线性,即每个数只筛一次。

到这里线性筛就讲解完了,下面附上运用线性筛和欧拉函数性质的[SDOI2008]仪仗队题解

#include<iostream>
#include<string.h>
#define maxl 40000
using namespace std;

void Prime(int*num,int*prim,int*phi,int*mob,int n,int&pn) {
	pn = 0;
	memset(num,-1,sizeof(num));
	for (int i = 2; i < n; ++i) {
		if (num[i]) {
			prim[pn++] = i;
			phi[i] = i - 1;
			mob[i] = -1;
		}
		for (int j = 0; j < pn && i * prim[j] < n; ++j) {
			if (i % prim[j] == 0) {
				num[i * prim[j]] = 0;
				mob[i * prim[j]] = 0;
				phi[i * prim[j]] = phi[i] * prim[j];
				break;
			}
			num[i * prim[j]] = 0;
			mob[i * prim[j]] = -mob[i];
			phi[i * prim[j]] = phi[i] * (prim[j] - 1);
		}
	}

}


int main() {
	int n,pn,result = 0;
	int num[maxl], prim[maxl],phi[maxl],mob[maxl];
	cin >> n;
	Prime(num, prim, phi, mob, n, pn);
	for (int i = 2; i < n; ++i)
		result = phi[i] + result;
	cout << (result * 2 + 3);
}

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值