【C/C++】输出格式%d、%6d、%06d、%-6d、%.6f的区分

博客主要介绍了C/C++中不同输出格式的区别,包括%d普通整数输出、%6d宽度6位不足左边补空格、%06d宽度6位不足左边补0、%-6d宽度6位不足右边补空格、%.6f保留小数点后6位,并给出了代码验证及输出结果示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【C/C++】输出格式%d、%6d、%06d、%-6d、%.6f的区分


1、%d 普通的整数输出

  代码验证:

#include<stdio.h>
int main()
{
	int i, sum;
	i = 1;
	sum = 0;
	while(i <= 100)
	{
		sum += i;
		i += 1;
	}
	printf("1到100的和为:%d\n" ,sum);
	return 0;
}

  输出结果:

1100的和为:5050
请按任意键继续. . .

2、%6d 整数输出,宽度是6位,不足左边补空格

  代码验证:

#include<stdio.h>
int main()
{
	int i, sum;
	i = 1;
	sum = 0;
	while(i <= 100)
	{
		sum += i;
		i += 1;
	}
	printf("1到100的和为:%6d\n" ,sum);
	return 0;
}

  输出结果: 5050前面有两个空格,一共6位。

1100的和为:  5050
请按任意键继续. . .

3、%06d 整数输出,宽度是6位,不足左边补数字0

  代码验证:

#include<stdio.h>
int main()
{
	int i, sum;
	i = 1;
	sum = 0;
	while(i <= 100)
	{
		sum += i;
		i += 1;
	}
	printf("1到100的和为:%06d\n" ,sum);
	return 0;
}

  输出结果:

1100的和为:005050
请按任意键继续. . .

4、%-6d 整数输出,宽度是6位,不足右边补空格

  代码验证:

#include<stdio.h>
int main()
{
	int i, sum;
	i = 1;
	sum = 0;
	while(i <= 100)
	{
		sum += i;
		i += 1;
	}
	printf("1到100的和为:%-6d\n" ,sum);
	return 0;
}

  输出结果: 5050后面有两个空格,一共6位,这里没有办法显示,可以用鼠标选中看到。

1100的和为:5050  
请按任意键继续. . .

5、%.6f 输出小数,即保留小数点后6位

  代码验证:

#include<stdio.h>
int main()
{
	float i, sum;
	i = 1;
	sum = 0;
	while (i <= 100)
	{
		sum += i;
		i += 1;
	}
	printf("1到100的和为:%.6f\n", sum);
	return 0;
}

  输出结果:

1100的和为:5050.000000
请按任意键继续. . .

(base) [root@localhost py3.8]# pip install PyGObject==3.44.0 -i https://pypi.tuna.tsinghua.edu.cn/simple Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting PyGObject==3.44.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/07/73/a034fc1bcd6d402d6f72ff618c093f91ac6921f968cc19806b6a1b1b19c8/PyGObject-3.44.0.tar.gz (720 kB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Collecting pycairo>=1.16.0 (from PyGObject==3.44.0) Using cached pycairo-1.26.1-cp38-cp38-linux_x86_64.whl Building wheels for collected packages: PyGObject Building wheel for PyGObject (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for PyGObject (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [44 lines of output] running bdist_wheel running build running build_py creating build/lib.linux-x86_64-cpython-38/pygtkcompat copying pygtkcompat/__init__.py -> build/lib.linux-x86_64-cpython-38/pygtkcompat copying pygtkcompat/generictreemodel.py -> build/lib.linux-x86_64-cpython-38/pygtkcompat copying pygtkcompat/pygtkcompat.py -> build/lib.linux-x86_64-cpython-38/pygtkcompat creating build/lib.linux-x86_64-cpython-38/gi copying gi/__init__.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/_constants.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/_error.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/_gtktemplate.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/_option.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/_ossighelper.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/_propertyhelper.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/_signalhelper.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/docstring.py -> build/lib.linux-x86_64-cpython-38/gi copying gi/importer.py -> build/lib
04-03
(nanodet) C:\Users\gyf>pip install tensorboard==2.10 Looking in indexes: http://mirrors.aliyun.com/pypi/simple/ Collecting tensorboard==2.10 Downloading http://mirrors.aliyun.com/pypi/packages/6b/42/e271c40c84c250b52fa460fda970899407c837a2049c53969f37e404b1f6/tensorboard-2.10.0-py3-none-any.whl (5.9 MB) ---------------------------------------- 5.9/5.9 MB 5.1 MB/s eta 0:00:00 Collecting absl-py>=0.4 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl (135 kB) Collecting grpcio>=1.24.3 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/87/7d/36009c38093e62969c708f20b86ab6761c2ba974b12ff10def6f397f24fa/grpcio-1.70.0-cp38-cp38-win_amd64.whl (4.3 MB) ---------------------------------------- 4.3/4.3 MB 5.8 MB/s eta 0:00:00 Collecting google-auth<3,>=1.6.3 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/17/63/b19553b658a1692443c62bd07e5868adaa0ad746a0751ba62c59568cd45b/google_auth-2.40.3-py2.py3-none-any.whl (216 kB) Collecting google-auth-oauthlib<0.5,>=0.4.1 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/b1/0e/0636cc1448a7abc444fb1b3a63655e294e0d2d49092dc3de05241be6d43c/google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB) Collecting markdown>=2.6.8 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/3f/08/83871f3c50fc983b88547c196d11cf8c3340e37c32d2e9d6152abe2c61f7/Markdown-3.7-py3-none-any.whl (106 kB) Requirement already satisfied: numpy>=1.12.0 in g:\.conda\envs\nanodet\lib\site-packages (from tensorboard==2.10) (1.24.3) Collecting protobuf<3.20,>=3.9.2 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/fd/38/cb53f28950a386c8d7e17fc305c97a158cf85d51d7e6caffe4f37336c138/protobuf-3.19.6-cp38-cp38-win_amd64.whl (896 kB) ---------------------------------------- 896.1/896.1 kB 6.7 MB/s eta 0:00:00 Requirement already satisfied: requests<3,>=2.21.0 in g:\.conda\envs\nanodet\lib\site-packages (from tensorboard==2.10) (2.32.3) Requirement already satisfied: setuptools>=41.0.0 in g:\.conda\envs\nanodet\lib\site-packages (from tensorboard==2.10) (75.1.0) Collecting tensorboard-data-server<0.7.0,>=0.6.0 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/74/69/5747a957f95e2e1d252ca41476ae40ce79d70d38151d2e494feb7722860c/tensorboard_data_server-0.6.1-py3-none-any.whl (2.4 kB) Collecting tensorboard-plugin-wit>=1.6.0 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/e0/68/e8ecfac5dd594b676c23a7f07ea34c197d7d69b3313afdf8ac1b0a9905a2/tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB) ---------------------------------------- 781.3/781.3 kB 4.8 MB/s eta 0:00:00 Collecting werkzeug>=1.0.1 (from tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/6c/69/05837f91dfe42109203ffa3e488214ff86a6d68b2ed6c167da6cdc42349b/werkzeug-3.0.6-py3-none-any.whl (227 kB) Requirement already satisfied: wheel>=0.26 in g:\.conda\envs\nanodet\lib\site-packages (from tensorboard==2.10) (0.44.0) Collecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/72/76/20fa66124dbe6be5cafeb312ece67de6b61dd91a0247d1ea13db4ebb33c2/cachetools-5.5.2-py3-none-any.whl (10 kB) Collecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/47/8d/d529b5d697919ba8c11ad626e835d4039be708a35b0d22de83a269a6682c/pyasn1_modules-0.4.2-py3-none-any.whl (181 kB) Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/64/8d/0133e4eb4beed9e425d9a98ed6e081a55d195481b7632472be1af08d2f6b/rsa-4.9.1-py3-none-any.whl (34 kB) Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/3b/5d/63d4ae3b9daea098d5d6f5da83984853c1bbacd5dc826764b249fe119d24/requests_oauthlib-2.0.0-py2.py3-none-any.whl (24 kB) Collecting importlib-metadata>=4.4 (from markdown>=2.6.8->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/a0/d9/a1e041c5e7caa9a05c925f4bdbdfb7f006d1f74996af53467bc394c97be7/importlib_metadata-8.5.0-py3-none-any.whl (26 kB) Requirement already satisfied: charset-normalizer<4,>=2 in g:\.conda\envs\nanodet\lib\site-packages (from requests<3,>=2.21.0->tensorboard==2.10) (3.3.2) Requirement already satisfied: idna<4,>=2.5 in g:\.conda\envs\nanodet\lib\site-packages (from requests<3,>=2.21.0->tensorboard==2.10) (3.7) Requirement already satisfied: urllib3<3,>=1.21.1 in g:\.conda\envs\nanodet\lib\site-packages (from requests<3,>=2.21.0->tensorboard==2.10) (2.2.3) Requirement already satisfied: certifi>=2017.4.17 in g:\.conda\envs\nanodet\lib\site-packages (from requests<3,>=2.21.0->tensorboard==2.10) (2024.8.30) Collecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/92/21/357205f03514a49b293e214ac39de01fadd0970a6e05e4bf1ddd0ffd0881/MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl (17 kB) Collecting zipp>=3.20 (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/62/8b/5ba542fa83c90e09eac972fc9baca7a88e7e7ca4b221a89251954019308b/zipp-3.20.2-py3-none-any.whl (9.2 kB) Collecting pyasn1<0.7.0,>=0.6.1 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/c8/f1/d6a797abb14f6283c0ddff96bbdd46937f64122b8c925cab503dd37f8214/pyasn1-0.6.1-py3-none-any.whl (83 kB) Collecting oauthlib>=3.0.0 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard==2.10) Downloading http://mirrors.aliyun.com/pypi/packages/be/9c/92789c596b8df838baa98fa71844d84283302f7604ed565dafe5a6b5041a/oauthlib-3.3.1-py3-none-any.whl (160 kB) Installing collected packages: tensorboard-plugin-wit, zipp, tensorboard-data-server, pyasn1, protobuf, oauthlib, MarkupSafe, grpcio, cachetools, absl-py, werkzeug, rsa, requests-oauthlib, pyasn1-modules, importlib-metadata, markdown, google-auth, google-auth-oauthlib, tensorboard Successfully installed MarkupSafe-2.1.5 absl-py-2.3.1 cachetools-5.5.2 google-auth-2.40.3 google-auth-oauthlib-0.4.6 grpcio-1.70.0 importlib-metadata-8.5.0 markdown-3.7 oauthlib-3.3.1 protobuf-3.19.6 pyasn1-0.6.1 pyasn1-modules-0.4.2 requests-oauthlib-2.0.0 rsa-4.9.1 tensorboard-2.10.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 werkzeug-3.0.6 zipp-3.20.2
最新发布
07-26
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值