ESP32 + MRCIOPYTHON◕‿◕

ESP32 + MRCIOPYTHON

ADC

基准电压 和 输入信号衰减量

ESP32内部ADC的基准电压通常为 1.1V,不同封装可能会略有不同。
ADC在接近基准电压时线性较差(特别是在较高衰减时),其最低测量电压约为 100mV,低于或等于100mV的电压读数为0,也就是说不能用ESP32直接测量低于100mv的电压。

ADC的基准电压为1.1V,所以,ESP32的ADC在无衰减的情况下,能测量的电压范围为100mV至950mV,要读取高于基准电压的电压,就需要使用atten参数指定输入衰减。其有效值(近似线性测量范围)为:

ADC.ATTN_0DB:无衰减(100mV - 950mV) 
ADC.ATTN_2_5DB:2.5dB 衰减(100mV - 1250mV) 
ADC.ATTN_6DB:6dB 衰减(150mV - 1750mV) 
ADC.ATTN_11DB:11dB 衰减(150mV - 2450mV) 
代码 和 函数
from machine import Pin
from machine import ADC
import time
def main():
    pin = Pin(39, Pin.IN)
    adc = ADC(pin) 
    adc.atten(ADC.ATTN_11DB) #指定输入信号衰减量
    val = adc.read()
    print(val)  

adc.read()会读取出来4095
read_u16()会读出来65535

OLED (SSD1306)

# MicroPython SSD1306 OLED driver, I2C and SPI interfaces

from micropython import const
import framebuf


# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)

# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
    def __init__(self, width, height, external_vcc):
        self.width = width
        self.height = height
        self.external_vcc = external_vcc
        self.pages = self.height // 8
        self.buffer = bytearray(self.pages * self.width)
        super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
        self.init_display()

    def init_display(self):
        for cmd in (
            SET_DISP | 0x00,  # off
            # address setting
            SET_MEM_ADDR,
            0x00,  # horizontal
            # resolution and layout
            SET_DISP_START_LINE | 0x00,
            SET_SEG_REMAP | 0x01,  # column addr 127 mapped to SEG0
            SET_MUX_RATIO,
            self.height - 1,
            SET_COM_OUT_DIR | 0x08,  # scan from COM[N] to COM0
            SET_DISP_OFFSET,
            0x00,
            SET_COM_PIN_CFG,
            0x02 if self.width > 2 * self.height else 0x12,
            # timing and driving scheme
            SET_DISP_CLK_DIV,
            0x80,
            SET_PRECHARGE,
            0x22 if self.external_vcc else 0xF1,
            SET_VCOM_DESEL,
            0x30,  # 0.83*Vcc
            # display
            SET_CONTRAST,
            0xFF,  # maximum
            SET_ENTIRE_ON,  # output follows RAM contents
            SET_NORM_INV,  # not inverted
            # charge pump
            SET_CHARGE_PUMP,
            0x10 if self.external_vcc else 0x14,
            SET_DISP | 0x01,
        ):  # on
            self.write_cmd(cmd)
        self.fill(0)
        self.show()

    def poweroff(self):
        self.write_cmd(SET_DISP | 0x00)

    def poweron(self):
        self.write_cmd(SET_DISP | 0x01)

    def contrast(self, contrast):
        self.write_cmd(SET_CONTRAST)
        self.write_cmd(contrast)

    def invert(self, invert):
        self.write_cmd(SET_NORM_INV | (invert & 1))

    def show(self):
        x0 = 0
        x1 = self.width - 1
        if self.width == 64:
            # displays with width of 64 pixels are shifted by 32
            x0 += 32
            x1 += 32
        self.write_cmd(SET_COL_ADDR)
        self.write_cmd(x0)
        self.write_cmd(x1)
        self.write_cmd(SET_PAGE_ADDR)
        self.write_cmd(0)
        self.write_cmd(self.pages - 1)
        self.write_data(self.buffer)


class SSD1306_I2C(SSD1306):
    def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
        self.i2c = i2c
        self.addr = addr
        self.temp = bytearray(2)
        self.write_list = [b"\x40", None]  # Co=0, D/C#=1
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.temp[0] = 0x80  # Co=1, D/C#=0
        self.temp[1] = cmd
        self.i2c.writeto(self.addr, self.temp)

    def write_data(self, buf):
        self.write_list[1] = buf
        self.i2c.writevto(self.addr, self.write_list)


class SSD1306_SPI(SSD1306):
    def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
        self.rate = 10 * 1024 * 1024
        dc.init(dc.OUT, value=0)
        res.init(res.OUT, value=0)
        cs.init(cs.OUT, value=1)
        self.spi = spi
        self.dc = dc
        self.res = res
        self.cs = cs
        import time

        self.res(1)
        time.sleep_ms(1)
        self.res(0)
        time.sleep_ms(10)
        self.res(1)
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(0)
        self.cs(0)
        self.spi.write(bytearray([cmd]))
        self.cs(1)

    def write_data(self, buf):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(1)
        self.cs(0)
        self.spi.write(buf)
        self.cs(1)
 
from machine import Pin
import machine
from utime import sleep
from ssd1306 import SSD1306_I2C

sleepSpan=1.5

sda=Pin(25)
scl=Pin(26)

i2c=machine.I2C(0,sda=sda,scl=scl,freq=400000)
oled=SSD1306_I2C(128,32,i2c)

while True:
    #在指定位置显示文字 str x y 
    oled.text("MicroPython",0,10)
    oled.text("C",10,20)
    oled.show()
    sleep(sleepSpan)
    #奇数时反相显示,偶数时正常显示
    oled.invert(1)
    sleep(sleepSpan)
    oled.invert(0)
    sleep(sleepSpan)
    #填满屏幕
    oled.fill(1)
    oled.show()
    sleep(sleepSpan)
    #调整亮度。0最暗,255最亮
    oled.contrast(32)
    sleep(sleepSpan)
    oled.contrast(255)
    #清空屏幕
    oled.fill(0)
    #在指定位置绘制点
    oled.pixel(100, 32, 1)
    oled.line(5,5,123,5,1)
    oled.rect(15,15,80,40,1)
    oled.fill_rect(25,25,40,20,1)
    oled.show()
    sleep(sleepSpan)
    #清空屏幕
    oled.fill(0)
    oled.show()
    sleep(sleepSpan)






DIY使用ESP32的手持游戏手柄并通过BLE进行通信 硬件部件: esp32× 1个 ws2812b× 6 游戏杆× 2 角度按钮× 2 按钮× 8 18560电池和电池座× 2 三向拨动开关× 1个 TP4056带保护的电池充电电路× 1个 MT3608升压转换器× 1个 软件应用程序和在线服务: Arduino IDE 手动工具和制造机: 烙铁(通用) 这是一个使用ESP32微控制器制作的DIY手持游戏手柄。您可能之前已经看过这样的游戏控制器。但大多数使用Arduino。或更具体地说,是Arduino pro micro或Leonardo开发板。因为这些板支持HID或通过USB的人机接口设备。但是esp32没有这种功能。那么我们该怎么做呢?嗯,esp32确实具有BLE或低功耗蓝牙,我们可以使用它通过蓝牙进行无线通信。 因此,我们有ESP32模块作为中央控制器,然后有USB C型端口和一个3.3v稳压器,可将5v转换为3.3v。然后我们有了编程电路,使用具有自动编程模式的ch340c usb到串行转换器和使用双工晶体管的自动复位电路。我们还具有电池充电电路,以及过充电和过放电保护功能。然后使用升压转换器ic将其升压至5v。接下来,我们有操纵杆,D-Pad按钮,触发按钮,Neopixel LED和i2c端口。最后是3向开关,可在USB电源和电池电源之间切换。 游戏手柄有 2个模拟游戏杆 2个触发按钮 2个D-Pads 6个可寻址RGB LED 和一个i2c端口 它可以使用2个18650锂离子电池运行,可以使用USB C型端口对其进行更改。它也可以用来对微控制器进行编程。该设计的灵感来自新的ps5控制器,以使其外观更好。GPIO4使用分压器连接到电池。这样我们就可以测量电池电压了。NeoPixel LED将指示控制器是否连接到设备或电池电压是否低。 该代码基于lemmingDev的BLE Gamepad库。在代码中,我为不同的输入定义了所有GPIO引脚。然后在设置中有一些初始的led动画。板子一旦连接到设备,所有的LED就会变成绿色。并且它将按先前定义的时间间隔检查电池电压。然后我们获得按钮状态,并相应地设置游戏手柄按钮。然后,我们采用模拟输入,并将其映射到合适的值。最后根据我们收到的值设置轴。上载代码后,在智能手机或PC上打开蓝牙菜单,您会看到一个新设备弹出。单击该按钮将其连接,就可以开始游戏了。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值