GCN学习:Pytorch-Geometric教程(二)

本文介绍了如何使用PyTorch Geometric进行数据转换,特别是针对ShapeNet数据集将点云转化为图。同时,展示了构建GCN网络的过程,以Cora数据集为例,说明在构建过程中不需要dataloader和额外的transform操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyG教程二

数据转换

PyTorch Geometric带有自己的变换,该变换期望将Data对象作为输入并返回一个新的变换后的Data对象。 可以使用torch_geometric.transforms.Compose将变换链接在一起,并在将处理后的数据集保存到磁盘之前(pre_transform)或访问数据集中的图形之前(transform)应用变换。
让我们看一个示例,其中我们对ShapeNet数据集(包含17,000个3D形状点clouds和来自16个形状类别的每个点标签)应用变换。

from torch_geometric.datasets import ShapeNet
dataset = ShapeNet(root='/tmp/ShapeNet', categories=['Airplane'])
print(dataset[0])
>>> Data(pos=[2518, 3], y=[2518])

通过transform将其从点云转化成图。

import torch_geometric.transforms as T
from torch_geometric.datasets import ShapeNet
dataset = ShapeNet(root='ShapeNet', categories=['Airplane'],
                    pre_transform=T.KNNGraph(k=6))
print(dataset[0])
>>> Data(edge_index=[2, 15108], pos
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值