魔法方法
魔法方法总是被双下划线包围,例如__init__。
魔法方法是面向对象的 Python 的一切,如果你不知道魔法方法,说明你还没能意识到面向对象的 Python 的强大。
魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。
魔法方法的第一个参数应为cls(类方法) 或者self(实例方法)。
cls:代表一个类的名称
self:代表一个实例对象的名称
基本的魔法方法
init(self[, …]) 构造器,当一个实例被创建的时候调用的初始化方法
【例子】
class Rectangle:
def __init__(self, x, y):
self.x = x
self.y = y
def getPeri(self):
return (self.x + self.y) * 2
def getArea(self):
return self.x * self.y
rect = Rectangle(4, 5)
print(rect.getPeri()) # 18
print(rect.getArea()) # 20
算术运算符
类型工厂函数,指的是“不通过类而是通过函数来创建对象”。
class C:
pass
print(type(len)) # <class 'builtin_function_or_method'>
print(type(dir)) # <class 'builtin_function_or_method'>
print(type(int)) # <class 'type'>
print(type(list)) # <class 'type'>
print(type(tuple)) # <class 'type'>
print(type(C)) # <class 'type'>
print(int('123')) # 123
# 这个例子中list工厂函数把一个元祖对象加工成了一个列表对象。
print(list((1, 2, 3))) # [1, 2, 3]
反算术运算符
反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。
radd(self, other)定义加法的行为:+
rsub(self, other)定义减法的行为:-
rmul(self, other)定义乘法的行为:*
rtruediv(self, other)定义真除法的行为:/
rfloordiv(self, other)定义整数除法的行为://
rmod(self, other) 定义取模算法的行为:%
rdivmod(self, other)定义当被 divmod() 调用时的行为
rpow(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
rlshift(self, other)定义按位左移位的行为:<<
rrshift(self, other)定义按位右移位的行为:>>
rand(self, other)定义按位与操作的行为:&
rxor(self, other)定义按位异或操作的行为:^
ror(self, other)定义按位或操作的行为:|
a + b
这里加数是a,被加数是b,因此是a主动,反运算就是如果a对象的__add__()方法没有实现或者不支持相应的操作,那么 Python 就会调用b的__radd__()方法。
class Nint(int):
def __radd__(self, other):
return int.__sub__(other, self) # 注意 self 在后面
a = Nint(5)
b = Nint(3)
print(a + b) # 8
print(1 + b) # -2
增量赋值运算符
iadd(self, other)定义赋值加法的行为:+=
isub(self, other)定义赋值减法的行为:-=
imul(self, other)定义赋值乘法的行为:*=
itruediv(self, other)定义赋值真除法的行为:/=
ifloordiv(self, other)定义赋值整数除法的行为://=
imod(self, other)定义赋值取模算法的行为:%=
ipow(self, other[, modulo])定义赋值幂运算的行为:**=
ilshift(self, other)定义赋值按位左移位的行为:<<=
irshift(self, other)定义赋值按位右移位的行为:>>=
iand(self, other)定义赋值按位与操作的行为:&=
ixor(self, other)定义赋值按位异或操作的行为:^=
ior(self, other)定义赋值按位或操作的行为:|=
一元运算符
neg(self)定义正号的行为:+x
pos(self)定义负号的行为:-x
abs(self)定义当被abs()调用时的行为
invert(self)定义按位求反的行为:~x
属性访问
getattr(self, name): 定义当用户试图获取一个不存在的属性时的行为。
getattribute(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。
setattr(self, name, value):定义当一个属性被设置时的行为。
delattr(self, name):定义当一个属性被删除时的行为。
class C:
def __getattribute__(self, item):
print('__getattribute__')
return super().__getattribute__(item)
def __getattr__(self, item):
print('__getattr__')
def __setattr__(self, key, value):
print('__setattr__')
super().__setattr__(key, value)
def __delattr__(self, item):
print('__delattr__')
super().__delattr__(item)
c = C()
c.x
# __getattribute__
# __getattr__
c.x = 1
# __setattr__
del c.x
# __delattr__
定制序列
协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。
容器类型的协议
如果说你希望定制的容器是不可变的话,你只需要定义__len__()和__getitem__()方法。
如果你希望定制的容器是可变的话,除了__len__()和__getitem__()方法,你还需要定义__setitem__()和__delitem__()两个方法。
class CountList:
def __init__(self, *args):
self.values = [x for x in args]
self.count = {}.fromkeys(range(len(self.values)), 0)
def __len__(self):
return len(self.values)
def __getitem__(self, item):
self.count[item] += 1
return self.values[item]
c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1]) # 3
print(c2[2]) # 6
print(c1[1] + c2[1]) # 7
print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
print(c2.count)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}
迭代器
迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
迭代器只能往前不会后退。
字符串,列表或元组对象都可用于创建迭代器:
string = 'lsgogroup'
for c in string:
print(c)
'''
l
s
g
o
g
r
o
u
p
'''
for c in iter(string):
print(c)
生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。
def myGen():
print('生成器执行!')
yield 1
yield 2
myG = myGen()
for each in myG:
print(each)
'''
生成器执行!
1
2
'''
myG = myGen()
print(next(myG))
# 生成器执行!
# 1
print(next(myG)) # 2
print(next(myG)) # StopIteration