【机器学习】为什么进行特征筛选时前要先用相关性筛一遍再进行降维?

为什么进行特征筛选时前要先用相关性筛一遍再进行降维?

首先,特征筛选时筛掉相关性高的特征是任何建模过程都绕不开的步骤,是基础中的基础。而降维则不是,降维只在某些特定场合用得上,比如每个基因作为一个特征有几万个,或每个像素作为一个特征有成千上万个像素。

所以一个是普遍的做法,一个是不普遍的做法,任何情况下先使用普遍的做法才是正常人的反应。

但这道题真正想问的是:如果不用相关性先筛一遍特征而直接降维,会有什么弊端吗?

结论(以PCA为例):降维的时候,把多个特征融合成一个特征,这其间必然伴随信息的提炼和损失,那么提炼什么?损失什么呢?我们很自然而然地推测:权重高的信息会被留下,权重低的则会被损失。即是说,由于高相关性的特征重复出现,这些特征会被赋予本不属于它的高权重,降低其他特征所蕴含的信息。

举个例子,如果一共有100个(99个AiA_iAi和1个B)特征,这99个AiA_iAi都高度相关,它们蕴含的信息其实只相当于1个特征蕴含的信息,也就是说这100个特征其实只相当于2个特征A和B,如果让人类来做特征筛选,最后只会剩下1个A和1个B。但是如果让PCA来降维会怎样呢?结果必然是B的信息几乎损失完,只留下A的

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sprite.Nym

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值