使用Scala实现SparkCore连接MySql数据库(写、读)

本文介绍如何使用Apache Spark读取和写入MySQL数据库,通过Scala示例代码展示了如何配置Spark环境,设置依赖,以及如何实现数据从Spark到MySQL的迁移。

pom依赖

<!-- 指定仓库位置,依次为aliyun、cloudera和jboss仓库 -->
    <repositories>
        <repository>
            <id>aliyun</id>
            <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        </repository>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
        </repository>
    </repositories>

    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <encoding>UTF-8</encoding>
        <scala.version>2.11.8</scala.version>
        <scala.compat.version>2.11</scala.compat.version>
        <spark.version>2.2.0</spark.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.38</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
    </dependencies>

    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <!-- 指定编译scala的插件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-surefire-plugin</artifactId>
                <version>2.18.1</version>
                <configuration>
                    <useFile>false</useFile>
                    <disableXmlReport>true</disableXmlReport>
                    <includes>
                        <include>**/*Test.*</include>
                        <include>**/*Suite.*</include>
                    </includes>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass></mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

代码展示

import java.sql.{Connection, DriverManager, PreparedStatement, ResultSet}

import org.apache.spark.rdd.{JdbcRDD, RDD}
import org.apache.spark.{SparkConf, SparkContext}

object JDBCDataSource{
	def main(args: Array[String]): unit={
		//Conf配置
		//local[*] -- 本地执行,用于测试
		
		val conf: sparkConf = new sparkConf().setAppName("wc").setMaster("local[*]")
		//spark执行平台
		val sc = new sparkContext(conf)
		sc.setLogLevel("WARN")
		
		//准备数据
		val dataRDD: RDD[(String,Int)] = sc.parallelize(List(("jack", 18), ("tom", 19), ("rose", 20)))
		
		//将每个分区的数据都发送到Mysql
		dataRDD.foreachParatition(data2MySQL)
		
		//查看数据
		//JdbcRDD准备参数
		val conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/database?characterEncoding=UTF-8","userName","passWord")
		val sql: String = "select id,name,age from tableName"
		val mapRow = (res: ResultSet) => {
			val id: Int = res.getInt("id")
			val name: String = res.getString("name")
			val age: Int = res.getInt("age")
			(id,name,age)
		}
		
		//Spark自带API获取Mysql数据,具体提示看idea的api提示
		val resRDD = new JdbcRDD[(Int,String,Int)](
			//
			sc,
			conn,
			sql,
			2,
			mapRow
		)
		resRDD.colltct().foreach(println)
		
	}
	
	//数据添加到MySql
	def data2MySQL(p: Iterator[(String,Int)]): Unit = {
		//获取连接
		val conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/database?characterEncoding=UTF-8","userName","passWord")
		val sql:String = "insert into tableName (`id`,`name`,`age`) values (NULL,?,?);"
		val ps: PreparedStatement = conn.prepareStatement(sql)
		//获取数据,写入到sql
		p.foreach(t=>{
			val name: String = t._1
			val age: Int = t._2
			
			ps.setString(1,name)
			ps.setInt(2,age)
			
			ps.executeUpdate()
		})
		conn.close()
		ps.close()
	}
}
### 使用ScalaSpark在IntelliJ IDEA中取Hadoop文件保存至MySQL #### 配置环境 为了实现这一目标,首先需要确保开发环境中已经正确配置了IntelliJ IDEA、Scala以及Apache Spark。这涉及到安装必要的软件包及其依赖项,设置好项目结构以便能够顺利编译运行代码[^4]。 #### 添加依赖库 接下来,在构建工具(如SBT或Maven)的配置文件里加入所需的外部库支持,特别是用于连接MySQL数据库驱动程序和支持Hadoop兼容性的组件。对于SBT而言,可以在`build.sbt`文件内添加如下声明: ```sbt libraryDependencies ++= Seq( "org.apache.spark" %% "spark-core" % "3.3.0", "org.apache.spark" %% "spark-sql" % "3.3.0", "mysql" % "mysql-connector-java" % "8.0.+" ) ``` 上述命令会引入最新的稳定版本号作为占位符,请根据实际情况调整具体数值[^1]。 #### 编应用程序逻辑 创建一个新的Scala源码文件,定义主类入口点,业务处理流程。这里提供了一个简单的例子展示如何加载来自HDFS路径下的文本文件通过DataFrame API将其转换成表格形式最后存储进关系型数据库表单之中: ```scala import org.apache.spark.sql.SparkSession object HdfsToMySqlApp { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .appName("HDFS to MySQL") .master("local[*]") .getOrCreate() import spark.implicits._ // Load data from HDFS into DataFrame val df = spark.read.textFile("/path/to/hdfs/file").toDF("line") // Process the dataframe as needed... // Save processed results back to MySQL table named 'example_table' df.write.mode("overwrite").jdbc( url="jdbc:mysql://localhost:3306/mydb", table="example_table", properties={ val props = new java.util.Properties() props.setProperty("driver","com.mysql.cj.jdbc.Driver") props.setProperty("user","root") props.setProperty("password","your_password_here") props } ) spark.stop() } } ``` 这段脚本展示了怎样利用Spark SQL模块完成ETL操作——即提取(Extract),转换(Transform),装载(Load)过程。注意替换掉示例中的虚拟参数以匹配实际部署场景的要求[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值