CF---C. Dominoes

本文探讨了一项关于在给定的n×2m矩阵中,通过旋转和排列domino来最小化最大列和的问题。详细介绍了输入输出格式、算法实现及样例测试结果,旨在为读者提供一种优化策略,解决特定的排列问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Dominoes
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

During the break, we decided to relax and play dominoes. Our box with Domino was empty, so we decided to borrow the teacher's dominoes.

The teacher responded instantly at our request. He put nm dominoes on the table as an n × 2m rectangle so that each of the n rows contained m dominoes arranged horizontally. Each half of each domino contained number (0 or 1).

We were taken aback, and the teacher smiled and said: "Consider some arrangement of dominoes in an n × 2m matrix. Let's count for each column of the matrix the sum of numbers in this column. Then among all such sums find the maximum one. Can you rearrange the dominoes in the matrix in such a way that the maximum sum will be minimum possible? Note that it is prohibited to change the orientation of the dominoes, they all need to stay horizontal, nevertheless dominoes are allowed to rotate by 180 degrees. As a reward I will give you all my dominoes".

We got even more taken aback. And while we are wondering what was going on, help us make an optimal matrix of dominoes.

Input

The first line contains integers nm (1 ≤ n, m ≤ 103).

In the next lines there is a description of the teachers' matrix. Each of next n lines contains m dominoes. The description of one domino is two integers (0 or 1), written without a space — the digits on the left and right half of the domino.

Output

Print the resulting matrix of dominoes in the format: n lines, each of them contains m space-separated dominoes.

If there are multiple optimal solutions, print any of them.

Sample test(s)
input
2 3
01 11 00
00 01 11
output
11 11 10
00 00 01
input
4 1
11
10
01
00
output
11
10
01
00
Note

Consider the answer for the first sample. There, the maximum sum among all columns equals 1 (the number of columns is 6, and not 3). Obviously, this maximum can't be less than 1, then such matrix is optimal.

Note that the dominoes can be rotated by 180 degrees.

 

//技术比较有限,第一次过CF的C题  纪念下~

Code:

#include <stdio.h>
#include <string.h>
#include <math.h>
#define N 1100
typedef struct{
    char a[3];
}LNode;
LNode f[N][N];
void FF(int num,char a[3]);
void Print();
int i,j,flag;int n,m;
int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
//    freopen("textout.txt", "w", stdout);
#endif
    while(scanf("%d %d",&n,&m)!=EOF){
        int num11=0,num10=0,num01=0,num00=0;
        for(i=0;i<n;i++)
            for(j=0;j<m;j++){
                scanf("%s",f[i][j].a);
                if(f[i][j].a[0]=='1' && f[i][j].a[1]=='1') num11++;
                else if(f[i][j].a[0]=='1' && f[i][j].a[1]=='0') num10++;
                else if(f[i][j].a[0]=='0' && f[i][j].a[1]=='1') num01++;
                else num00++;

            }
        i=1;j=1;flag=1;
        FF(num11,"11");
        //FF(num10,i,j,flag,"10");
        //FF(num01,i,j,flag,"01");
        int ii,jj;num10=num10+num01;
        char aa[3]="10",bb[3]="01";
        ii=i;jj=j;
        while(num10--){
            if(num10==-1) break;
            if(ii==1 || f[ii-1][jj].a[0]=='0' ||(f[ii-1][jj].a[0]=='1' && f[ii-1][jj].a[1]=='1') )
                strcpy(f[ii][jj].a,aa);
            else strcpy(f[ii][jj].a,bb);
            if(flag==1){
                jj++;
                if(jj==(m+1)){ii++;jj=m;flag=2;}
            }
            else{
                jj--;
                if(jj==0){ii++;jj=1;flag=1;}
            }
        }
        i=ii;j=jj;
        FF(num00,"00");
        Print();
    }
    return 0;
}

void FF(int num,char a[3]){
    while(num--){
        strcpy(f[i][j].a,a);
        if(flag==1){
            j++;
            if(j==(m+1)){i++;j=m;flag=2;}
        }
        else{
            j--;
            if(j==0){i++;j=1;flag=1;}
        }
    }
}
void Print(){
    for(i=1;i<=n;i++){
        for(j=1;j<=m;j++){
            if(j>1) printf(" ");
            printf("%s",f[i][j].a);
        }
        printf("\n");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值