Black And White (dfs + 剪枝)

本文探讨了一个类似于四色定理的问题,即如何使用K种颜色为N×M的棋盘上色,使得相邻格子颜色不同且每种颜色使用次数固定。文章提供了一种基于深度优先搜索(DFS)的解决方案,并通过样例输入输出展示了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Black And White

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 527    Accepted Submission(s): 145
Special Judge


Problem Description
In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
— Wikipedia, the free encyclopedia

In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

You are asked to solve a similar problem:

Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly ci cells.

Matt hopes you can tell him a possible coloring.
 

 

Input
The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

The second line contains K integers ci (ci > 0), denoting the number of cells where the i-th color should be used.

It’s guaranteed that c1 + c2 + · · · + cK = N × M .
 

 

Output
For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1). 

In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

If there are multiple solutions, output any of them.
 

 

Sample Input
4 1 5 2 4 1 3 3 4 1 2 2 4 2 3 3 2 2 2 3 2 3 2 2 2
 

 

Sample Output
Case #1: NO Case #2: YES 4 3 4 2 1 2 4 3 4 Case #3: YES 1 2 3 2 3 1 Case #4: YES 1 2 2 3 3 1
 
 
·学习傅总思路打出来的代码,基本相同。 
  http://fudq.blog.163.com/blog/static/191350238201411271332692/
·一直还是比较怕dfs的,我只能说,,,练吧。。。。
·这题的剪枝也是醉了,现场想到了,加的位置不对还是没过,,,不知道是否是出题者故意的,,如果是就太神了。。
 
AC Code:
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <algorithm>
 4 #include <cstring>
 5 #include <string.h>
 6 #include <math.h>
 7 #include <queue>
 8 #include <stack>
 9 #include <stdlib.h>
10 #include <map>
11 using namespace std;
12 #define LL long long 
13 #define sf(a) scanf("%d",&(a));
14 
15 #define N 21
16 int r[N][N];
17 int n,m,flag,k;
18 int f[10010];
19 //染色:  dfs,深搜 + 剪枝
20 
21 
22 void Output(){
23     printf("YES\n");
24     for(int i=1;i<=n;i++){
25         //if(i==0) printf("%d",r[i][0]);
26         for(int j=1;j<=m;j++)
27             if(j==1)
28                 printf("%d",r[i][j]+1);
29             else printf(" %d",r[i][j]+1);
30         printf("\n");
31     }
32 }
33 int jud(int x,int y,int i){
34     if(r[x-1][y] == i) return 0;
35     if(r[x][y-1] == i) return 0; //表示此种方式不行!
36     return 1;
37 }
38 void dfs(int x,int y,int cnt){
39     if(flag) return ;
40     if(cnt == 0){
41         flag=1;
42         Output();
43         return ;
44     }
45     //加上剪枝
46     for(int i=0;i<k;i++){
47         if(f[i] > (cnt+1)/2) return ; //直接返回,此时不成功!
48     }
49     for(int i=0;i<k;i++){
50         if(f[i] && jud(x,y,i)){
51             r[x][y] = i;
52             f[i]--;
53             if(y==m) dfs(x+1,1,cnt-1);
54             else dfs(x,y+1,cnt-1);
55             r[x][y]=-1;
56             f[i]++;
57         }
58     }
59 
60 }
61 int main(){
62     int T,cas=1;
63     scanf("%d",&T);
64     while(T--){
65         printf("Case #%d:\n",cas++);
66         scanf("%d %d %d",&n,&m,&k);
67         flag=0;
68         for(int i=0;i<k;i++) scanf("%d",&f[i]);
69         memset(r,-1,sizeof(r));
70         dfs(1,1,n*m);
71         if(!flag) printf("NO\n");
72     }
73 
74     return 0;
75 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值