HDU2795 Billboard【线段树 点修改+区间查询】

公告牌公告张贴问题的线段树解法
博客围绕一个h*w的公告牌张贴公告问题展开。公告为1*wi的尺寸,需尽量往上、同一高度尽量靠左张贴。要找出第n个广告所在行数,无合适位置则输出 -1。解题思路是查询并更新数列中首个大于等于wi的值,用线段树单点更新,还给出了C++代码。

Billboard

http://acm.hdu.edu.cn/showproblem.php?pid=2795

Time Limit: 20000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 30888    Accepted Submission(s): 12391


Problem Description

At the entrance to the university, there is a huge rectangular billboard of size h*w (h is its height and w is its width). The board is the place where all possible announcements are posted: nearest programming competitions, changes in the dining room menu, and other important information.

On September 1, the billboard was empty. One by one, the announcements started being put on the billboard.

Each announcement is a stripe of paper of unit height. More specifically, the i-th announcement is a rectangle of size 1 * wi.

When someone puts a new announcement on the billboard, she would always choose the topmost possible position for the announcement. Among all possible topmost positions she would always choose the leftmost one.

If there is no valid location for a new announcement, it is not put on the billboard (that's why some programming contests have no participants from this university).

Given the sizes of the billboard and the announcements, your task is to find the numbers of rows in which the announcements are placed.

 

Input

There are multiple cases (no more than 40 cases).

The first line of the input file contains three integer numbers, h, w, and n (1 <= h,w <= 10^9; 1 <= n <= 200,000) - the dimensions of the billboard and the number of announcements.

Each of the next n lines contains an integer number wi (1 <= wi <= 10^9) - the width of i-th announcement.

 

Output

For each announcement (in the order they are given in the input file) output one number - the number of the row in which this announcement is placed. Rows are numbered from 1 to h, starting with the top row. If an announcement can't be put on the billboard, output "-1" for this announcement.

 

 

Sample Input

3 5 5
2
4
3
3
3

 Sample Output

1
2
1
3
-1

Author

hhanger@zju

 

Source

HDOJ 2009 Summer Exercise(5)

 

题意

一个h*w的公告牌,要在其上贴公告。输入的是1*wi的wi值,这些是公告的尺寸。接下来要满足的条件有:

1、尽量往上,同一高度尽量靠左。

2、求第n个广告所在的行数。(行数从1开始编号)

3、没有合适的位置贴了则输出-1。

思路

查询并更新数列中第一个大于等于wi的值,并使其值减去wi,线段树单点更新。

C++代码

#include<iostream>
#include<algorithm>

using namespace std;

#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1

const int N=200000;

int maxv[N<<2],w;

void pushup(int rt)
{
	maxv[rt]=max(maxv[rt<<1],maxv[rt<<1|1]);
}

void build(int l,int r,int rt)
{
	if(l==r)
	{
		maxv[rt]=w;
		return;
	}
	int m=(l+r)>>1;
	build(ls);
	build(rs);
	pushup(rt);
}

int update(int width,int l,int r,int rt)
{
	if(width>maxv[rt]) return -1;
	if(l==r)
	{
		maxv[rt]-=width;//将宽度为width的公告贴在的l行,第l行的剩余的长度要减去width 
		return l;//返回行号 
	}
	int m=(l+r)>>1,res;
	if(width<=maxv[rt<<1])
	  res=update(width,ls);
	else
	  res=update(width,rs);
	pushup(rt);
	return res;
}

int main()
{
	int h,n;
	while(~scanf("%d%d%d",&h,&w,&n))
	{
		int num=min(h,N),width;
		build(1,num,1);
		while(n--)
		{
			scanf("%d",&width);
			printf("%d\n",update(width,1,num,1));
		}
	}
	return 0;
}

 

 

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值