HDU5100 Chessboard【组合数学】

本文探讨了使用k×1大小的多米诺骨牌覆盖n×n棋盘的问题,旨在找出能够被覆盖的最大方格数量。通过分析输入参数n和k的关系,并利用模运算判断,给出了一种高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chessboard

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1434    Accepted Submission(s): 589


 

Problem Description

Consider the problem of tiling an n×n chessboard by polyomino pieces that are k×1 in size; Every one of the k pieces of each polyomino tile must align exactly with one of the chessboard squares. Your task is to figure out the maximum number of chessboard squares tiled.

Input

There are multiple test cases in the input file.
First line contain the number of cases T (T≤10000). 
In the next T lines contain T cases , Each case has two integers n and k. (1≤n,k≤100)

Output

Print the maximum number of chessboard squares tiled.

Sample Input

2
6 3
5 3

Sample Output

36

24

Source

BestCoder Round #17

问题链接:HDU5100 Chessboard

题解:http://www.matrix67.com/blog/archives/5900

AC的C++程序:

#include<iostream>

using namespace std;

int solve(int n,int k)
{
	if(n<k)  //棋盘还比一个矩阵小返回0 
	  return 0;
	int m=n%k;
	if(m<=k/2)
	  return n*n-m*m;
	else
	  return n*n-(k-m)*(k-m);
}

int main()
{
	int t,n,k;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&k);
		printf("%d\n",solve(n,k));
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值