RGB to HSI、CMYK的代码实现
前言:
在之前博文的基础上,我使用OpenCV2实现了RGB颜色空间向HIS、CMYK转换的代码。下列链接为各种经典颜色空间的介绍及转换公式的介绍。
http://blog.youkuaiyun.com/solomon1558/article/details/43772147
1. RGB to HIS
HSI与RGB颜色空间可以进行相互转换。RGB转换到HSI 的计算公式如下:首先给定RGB颜色空间的值(R,G,B),其中R,G,B∈[ 0,2 5 5],则转换到HSI 空间的(H,S,I)值的计算如下:设将(R ,G ,B)归一化得(R',G',B')为:
int rgb2hsi(Mat &image,Mat &hsi){
if(!image.data){
cout<<"Miss Data"<<endl;
return -1;
}
int nl = image.rows;
int nc = image.cols;
if(image.isContinuous()){
nc = nc*nl;
nl = 1;
}
for(int i = 0;i < nl;i++){
uchar *src = image.ptr<uchar>(i);
uchar *dst = hsi.ptr<uchar>(i);
for(int j = 0;j < nc;j++){
float b = src[j*3]/255.0;
float g = src[j*3+1]/255.0;
float r = src[j*3+2]/255.0;
float num = (float)(0.5*((r-g)+(r-b)));
float den = (float)sqrt((r-g)*(r-g)+(r-b)*(g-b));
float H,S,I;
if(den == 0){ //分母不能为0
H = 0;
}
else{
double theta = acos(num/den);
if(b <= g)
H = theta/(PI*2);
else
H = (2*PI - theta)/(2*PI);
}
double minRGB = min(min(r,g),b);
den = r+g+b;
if(den == 0) //分母不能为0
S = 0;
else
S = 1 - 3*minRGB/den;
I = den/3.0;
//将S分量和H分量都扩充到[0,255]区间以便于显示;
//一般H分量在[0,2pi]之间,S在[0,1]之间
dst[3*j] = H*255;
dst[3*j+1] = S*255;
dst[3*j+2] = I*255;
}
}
return 0;
}
【注】:
程序中将S分量和H分量都扩充到[0,255]区间以便于显示;
一般H分量在[0,2pi]之间,S在[0,1]之间。
2. RGB to CMYK
给定RGB颜色空间的值(R,G,B),其中R,G ,B∈ [0, 2 5 5],则转换到CMYK 空间的(C,M,Y,K)值的计算如下:
【注】式中,maxG是每个矢量分量的最大允许值(255);C , M , Y , K ∈ [ 0,255]。
int rgb2cmyk( Mat &image,Mat &cmyk){
if(!image.data){
cout<<"Miss Data"<<endl;
return -1;
}
int nl = image.rows; //行数
int nc = image.cols; //列数
if(image.isContinuous()){ //没有额外的填补像素
nc = nc*nl;
nl = 1; //It is now a 1D array
}
//对于连续图像,本循环只执行1次
for(int i=0;i<nl;i++){
uchar *data = image.ptr<uchar>(i);
uchar *dataCMYK = cmyk.ptr<uchar>(i);
for(int j = 0;j < nc;j++){
uchar b = data[3*j];
uchar g = data[3*j+1];
uchar r = data[3*j+2];
uchar c = 255 - r;
uchar m = 255 - g;
uchar y = 255 - b;
uchar k = min(min(c,m),y);
dataCMYK[4*j] = c - k;
dataCMYK[4*j+1] = m - k;
dataCMYK[4*j+2] = y - k;
dataCMYK[4*j+3] = k;
}
}
return 0;
}
3. 完整的工程
#include<opencv2\core\core.hpp>
#include<opencv2\highgui\highgui.hpp>
#include<opencv2\opencv.hpp>
#include<vector>
#define PI 3.1416
#define min(a,b) (a<b?a:b)
using namespace std;
using namespace cv;
int rgb2hsi(Mat &image,Mat &hsi){
if(!image.data){
cout<<"Miss Data"<<endl;
return -1;
}
int nl = image.rows;
int nc = image.cols;
if(image.isContinuous()){
nc = nc*nl;
nl = 1;
}
for(int i = 0;i < nl;i++){
uchar *src = image.ptr<uchar>(i);
uchar *dst = hsi.ptr<uchar>(i);
for(int j = 0;j < nc;j++){
float b = src[j*3]/255.0;
float g = src[j*3+1]/255.0;
float r = src[j*3+2]/255.0;
float num = (float)(0.5*((r-g)+(r-b)));
float den = (float)sqrt((r-g)*(r-g)+(r-b)*(g-b));
float H,S,I;
if(den == 0){ //分母不能为0
H = 0;
}
else{
double theta = acos(num/den);
if(b <= g)
H = theta/(PI*2);
else
H = (2*PI - theta)/(2*PI);
}
double minRGB = min(min(r,g),b);
den = r+g+b;
if(den == 0) //分母不能为0
S = 0;
else
S = 1 - 3*minRGB/den;
I = den/3.0;
//将S分量和H分量都扩充到[0,255]区间以便于显示;
//一般H分量在[0,2pi]之间,S在[0,1]之间
dst[3*j] = H*255;
dst[3*j+1] = S*255;
dst[3*j+2] = I*255;
}
}
return 0;
}
int rgb2cmyk( Mat &image,Mat &cmyk){
if(!image.data){
cout<<"Miss Data"<<endl;
return -1;
}
int nl = image.rows; //行数
int nc = image.cols; //列数
if(image.isContinuous()){ //没有额外的填补像素
nc = nc*nl;
nl = 1; //It is now a 1D array
}
//对于连续图像,本循环只执行1次
for(int i=0;i<nl;i++){
uchar *data = image.ptr<uchar>(i);
uchar *dataCMYK = cmyk.ptr<uchar>(i);
for(int j = 0;j < nc;j++){
uchar b = data[3*j];
uchar g = data[3*j+1];
uchar r = data[3*j+2];
uchar c = 255 - r;
uchar m = 255 - g;
uchar y = 255 - b;
uchar k = min(min(c,m),y);
dataCMYK[4*j] = c - k;
dataCMYK[4*j+1] = m - k;
dataCMYK[4*j+2] = y - k;
dataCMYK[4*j+3] = k;
}
}
return 0;
}
int main(){
Mat img = imread("E:\\CV视频处理工作室\\Test_Photo\\lena_1.jpg");
if(!img.data){
cout<<"Miss Data"<<endl;
return -1;
}
Mat img_cmyk,img_hsi;
Mat img_hsv;
vector <Mat> vecRgb,vecHsi,vecHls,vecHsv,vecCmyk;
img_hsv.create(img.rows,img.cols,CV_8UC3);
Mat img_hls;
img_hls.create(img.rows,img.cols,CV_8UC3);
//生成与输入图像尺寸一样的4通道cmyk图像
img_cmyk.create(img.rows,img.cols,CV_8UC4);
img_hsi.create(img.rows,img.cols,CV_8UC3);
rgb2cmyk(img,img_cmyk);
rgb2hsi(img,img_hsi);
cvtColor(img,img_hsv,CV_BGR2HSV);
cvtColor(img,img_hls,CV_BGR2HLS);
split(img_cmyk,vecCmyk);
split(img_hsi,vecHsi);
cout<<"pixel(0,0) in RGB"<<endl;
for(int i=0;i<3;i++){
cout<<(int)img.at<Vec3b>(0,0)[i]<<" ";
}
cout<<endl<<"pixel(0,0) in CMYK"<<endl;
for(int i=0;i<4;i++){
cout<<(int)img_cmyk.at<Vec4b>(0,0)[i]<<" ";
}
int a = min(min(24,32),16);
cout<<endl<<a;
namedWindow("RGB_Image");
namedWindow("CMYK_Image");
//namedWindow("HSV_Image");
//namedWindow("HLS_Image");
namedWindow("HSI_Image");
namedWindow("CMYK_C");
namedWindow("CMYK_M");
namedWindow("CMYK_Y");
namedWindow("CMYK_K");
imshow("CMYK_C",vecCmyk[0]);
imshow("CMYK_M",vecCmyk[1]);
imshow("CMYK_Y",vecCmyk[2]);
imshow("CMYK_K",vecCmyk[3]);
imshow("HSI_H",vecHsi[0]);
imshow("HSI_S",vecHsi[1]);
imshow("HSI_I",vecHsi[2]);
imshow("RGB_Image",img);
imshow("CMYK_Image",img_cmyk);
//imshow("HSV_Image",img_hsv);
//imshow("HLS_Image",img_hls);
imshow("HSI_Image",img_hsi);
waitKey();
return 0;
}