单例模式

单例模式是一种设计模式,保证一个类只有一个实例,并提供全局访问点。通过__new__方法实现Python中的单例,例子中展示了在多线程环境下使用单例的Bus类。单例模式优点包括资源控制和统一访问,但也存在扩展困难和职责过重的问题。
部署运行你感兴趣的模型镜像

模式动机

对于系统中的某些类来说,只有一个实例很重要,例如,一个系统中可以存在多个打印任务,但是只能有一个正在工作的任务;一个系统只能有一个窗口管理器或文件系统;一个系统只能有一个计时工具或ID(序号)生成器。

如何保证一个类只有一个实例并且这个实例易于被访问呢?定义一个全局变量可以确保对象随时都可以被访问,但不能防止我们实例化多个对象。

一个更好的解决办法是让类自身负责保存它的唯一实例。这个类可以保证没有其他实例被创建,并且它可以提供一个访问该实例的方法。这就是单例模式的模式动机。

定义

单例模式(Singleton Pattern):单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例,这个类称为单例类,它提供全局访问的方法。

单例模式的要点有三个:一是某个类只能有一个实例;二是它必须自行创建这个实例;三是它必须自行向整个系统提供这个实例。单例模式是一种对象创建型模式。单例模式又名单件模式或单态模式。l

例子:

#encoding=utf8
import threading
import time
#这里使用方法__new__来实现单例模式
class Singleton(object):#抽象单例
    def __new__(cls, *args, **kw):
        if not hasattr(cls, '_instance'):
            orig = super(Singleton, cls)
            cls._instance = orig.__new__(cls, *args, **kw)
        return cls._instance
#总线
class Bus(Singleton):
    lock = threading.RLock()
    def sendData(self,data):
        self.lock.acquire()
        time.sleep(3)
        print "Sending Signal Data...",data
        self.lock.release()
#线程对象,为更加说明单例的含义,这里将Bus对象实例化写在了run里
class VisitEntity(threading.Thread):
    my_bus=""
    name=""
    def getName(self):
        return self.name
    def setName(self, name):
        self.name=name
    def run(self):
        self.my_bus=Bus()
        self.my_bus.sendData(self.name)

if  __name__=="__main__":
    for i in range(3):
        print "Entity %d begin to run..."%i
        my_entity=VisitEntity()
        my_entity.setName("Entity_"+str(i))
        my_entity.start()

优点

  • 提供了对唯一实例的受控访问。因为单例类封装了它的唯一实例,所以它可以严格控制客户怎样以及何时访问它,并为设计及开发团队提供了共享的概念。
  • 由于在系统内存中只存在一个对象,因此可以节约系统资源,对于一些需要频繁创建和销毁的对象,单例模式无疑可以提高系统的性能。
  • 允许可变数目的实例。我们可以基于单例模式进行扩展,使用与单例控制相似的方法来获得指定个数的对象实例。

缺点

  • 由于单例模式中没有抽象层,因此单例类的扩展有很大的困难。
  • 单例类的职责过重,在一定程度上违背了“单一职责原则”。因为单例类既充当了工厂角色,提供了工厂方法,同时又充当了产品角色,包含一些业务方法,将产品的创建和产品的本身的功能融合到一起。
  • 滥用单例将带来一些负面问题,如为了节省资源将数据库连接池对象设计为单例类,可能会导致共享连接池对象的程序过多而出现连接池溢出;现在很多面向对象语言(如Java、C#)的运行环境都提供了自动垃圾回收的技术,因此,如果实例化的对象长时间不被利用,系统会认为它是垃圾,会自动销毁并回收资源,下次利用时又将重新实例化,这将导致对象状态的丢失。

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术员或研究员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合群:企业市场/公关负责、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值