bookshelf-01背包问题

本文探讨了一个有趣的编程问题:如何通过让部分牛堆叠起来达到书架的高度,使得未参与堆叠的牛的总高度最小。这实际上是一个01完全背包问题的变种,通过动态规划算法来解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Desription

Farmer John recently bought another bookshelf for the cow library, but the shelf is getting filled up quite quickly, and now the only available space is at the top

FJ has N cows (1 ≤ N ≤ 20) each with some height of Hi (1 ≤ Hi ≤ 1,000,000 - these are very tall cows). The bookshelf has a height of B (1 ≤ B ≤ S, where S is the sum of the heights of all cows).

To reach the top of the bookshelf, one or more of the cows can stand on top of each other in a stack, so that their total height is the sum of each of their individual heights. This total height must be no less than the height of the bookshelf in order for the cows to reach the top.

Since a taller stack of cows than necessary can be dangerous, your job is to find the set of cows that produces a stack of the smallest height possible such that the stack can reach the bookshelf. 

Input
* Line 1: Two space-separated integers: N and B

* Lines 2..N+1: Line i+1 contains a single integer: Hi

Output

* Line 1: A single integer representing the (non-negative) difference between the total height of the optimal set of cows and the height of the shelf.

Sample Input
5 16
3
1
3
5
6

Sample Output

1


John有N头牛每头高度为Hi,一个书架高为B,现将牛逐个踩在其他牛背上达到书架的高度B,求队列外剩下的牛的最小高度。

01完全背包问题,简化为一个载重为B的背包,每个物体质量为Hi,求背包外物体最小质量,即总质量和减去能装入背包的最大质量。


AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int dp[2000002];
int main()
{
    int n,b;
    while(scanf("%d%d",&n,&b)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        int h[20+5];
        int sum=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&h[i]);
            sum+=h[i];
        }
        for(int i=1;i<=n;i++)
            for(int j=sum;j>=h[i];j--)
                dp[j]=max(dp[j],dp[j-h[i]]+h[i]);
        int m=sum;
        for(int i=b;i<=sum;i++)
            if(dp[i]>=b&&dp[i]-b<m)m=dp[i]-b;
        cout<<m<<endl;
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值