1、query string基础语法
GET /test_index/test_type/_search?q=test_field:test
GET /test_index/test_type/_search?q=+test_field:test
GET /test_index/test_type/_search?q=-test_field:test
一个是掌握q=field:search content的语法,还有一个是掌握+和-的含义
2、_all metadata的原理和作用
GET /test_index/test_type/_search?q=test
直接可以搜索所有的field,任意一个field包含指定的关键字就可以搜索出来。我们在进行中搜索的时候,难道是对document中的每一个field都进行一次搜索吗?不是的
es中的_all元数据,在建立索引的时候,我们插入一条document,它里面包含了多个field,此时,es会自动将多个field的值,全部用字符串的方式串联起来,变成一个长的字符串,作为_all field的值,同时建立索引
后面如果在搜索的时候,没有对某个field指定搜索,就默认搜索_all field,其中是包含了所有field的值的
举个例子
{
"name": "jack",
"age": 26,
"email": "jack@sina.com",
"address": "guangzhou"
}
"jack 26 jack@sina.com guangzhou",作为这一条document的_all field的值,同时进行分词后建立对应的倒排索引
3、query string分词
query string必须以和index建立时相同的analyzer进行分词
query string对exact value和full text的区别对待
date:exact value
_all:full text
比如我们有一个document,其中有一个field,包含的value是:hello you and me,建立倒排索引
我们要搜索这个document对应的index,搜索文本是hell me,这个搜索文本就是query string
query string,默认情况下,es会使用它对应的field建立倒排索引时相同的分词器去进行分词,分词和normalization,只有这样,才能实现正确的搜索
我们建立倒排索引的时候,将dogs --> dog,结果你搜索的时候,还是一个dogs,那不就搜索不到了吗?所以搜索的时候,那个dogs也必须变成dog才行。才能搜索到。
知识点:不同类型的field,可能有的就是full text,有的就是exact value
post_date,date:exact value
_all:full text,分词,normalization
4、例子
GET /_search?q=2017
搜索的是_all field,document所有的field都会拼接成一个大串,进行分词
2017-01-02 my second article this is my second article in this website 11400
doc1 doc2 doc3
2017 * * *
01 *
02 *
03 *
_all,2017,自然会搜索到3个docuemnt
GET /_search?q=2017-01-01
_all,2017-01-01,query string会用跟建立倒排索引一样的分词器去进行分词
2017
01
01
GET /_search?q=post_date:2017-01-01
date,会作为exact value去建立索引
doc1 doc2 doc3
2017-01-01 *
2017-01-02 *
2017-01-03 *
post_date:2017-01-01,2017-01-01,doc1一条document
3、测试分词器
GET /_analyze
{
"analyzer": "standard",
"text": "Text to analyze"
}
Elasticsearch Query解析
本文深入探讨了Elasticsearch中的QueryString查询语法,包括基础语法、_all元数据的原理和作用、QueryString的分词机制及示例。理解这些概念对于高效地在Elasticsearch中检索数据至关重要。
2551

被折叠的 条评论
为什么被折叠?



