一、全局平均池化
全局平均池化层(GAP)在2013年的《Network In Network》(NIN)中首次提出,于是便风靡各种卷积神经网络。为什么它这么受欢迎呢?
一般情况下,卷积层用于提取二维数据如图片、视频等的特征,针对于具体任务(分类、回归、图像分割)等,卷积层后续会用到不同类型的网络,拿分类问题举例,最简单的方式就是将卷积网络提取出的特征(feature map)输入到softmax全连接层对应不同的类别。首先,这里的feature map是二维多通道的数据结构,类似于三个通道(红黄绿)的彩色图片,也就是这里的feature map具有空间上的信息;其次,在GAP被提出之前,常用的方式是将feature map直接拉平成一维向量(下图左),但是GAP不同,是将每个通道的二维图像做平均,最后也就是每个通道对应一个均值(下图右)。

思想:对于输出的每一个通道的特征图的所有像素计算一个平均值,经过全局平均池化之后就得到一个 维度==类别

最低0.47元/天 解锁文章
4254

被折叠的 条评论
为什么被折叠?



