特大好消息
周三晚上,我媳妇儿就要带着俩小爷去重庆姐姐家玩了,我又可以一个人开心的学习、玩耍了,想着都开心到失眠啊…失眠怎么办?写公众号啊,哈哈。
文本分析
很多时候,我们会去统计一片文章中的高频词汇,以此来作为文章的关键词条,那么词频分析在python中,该用什么模块做?jieba!
第一次听到这个词就乐了,一个**“结巴”,帮助我们统计词频…但仔细了解这个模块后,你会发现它的强大。怎么证明?来看看github。
19K的star,5000+fork你就知道它多受欢迎了!让我们先来学学jieba**。
jieba介绍
jieba的github上readme写的非常详细,如果大家喜欢可以去仔细学习:jieba gihub地址。这里挑我们代码需要用到的地方讲解下…
安装: pip install jieba
以下内容引用自jieba github
“结巴”中文分词:做最好的 Python 中文分词组件
分词
- jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
- jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
- 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
- jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
- jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
- jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。
代码示例
# encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list)) # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))
输出:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大