hdu 4722 Good Numbers

Good Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5316    Accepted Submission(s): 1689


Problem Description
If we sum up every digit of a number and the result can be exactly divided by 10, we say this number is a good number.
You are required to count the number of good numbers in the range from A to B, inclusive.
 

Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
Each test case comes with a single line with two numbers A and B (0 <= A <= B <= 1018).
 

Output
For test case X, output "Case #X: " first, then output the number of good numbers in a single line.
 

Sample Input
2 1 10 1 20
 

Sample Output
Case #1: 0 Case #2: 1
Hint
The answer maybe very large, we recommend you to use long long instead of int.

题意:找出A~B中各个数位的和能被10整除的数的个数;

数据范围是1e18,所以直接暴力肯定会超时,我们发现该题同样是与数位的运算有关,所以很明显是数位DP;

数位DP其实是有模板的,上一篇DP入门题已经提到过;一般情况下函数中有三个参数(int per, int state, bool fp)per表示数的第几位,state表示状态,fp则用来限制数位的取值;在本题中一共有10个状态,因为模10有十种结果嘛;

好下面看一下代码:

#include <iostream>
#include <cstring>

using namespace std;

long long dp[25][15], digit[25];
long long dfs(int per, int state, bool fp){
    if(per==0)                             //当per为零时表示这个数我已经枚举完,此时如果状态为零即模10为零,结果就加1;
        return state==0;
    if(!fp && dp[per][state]!=-1)
        return dp[per][state];
    long long ret=0;
    int maxfp = fp? digit[per] : 9;
    for(int i=0; i<=maxfp; i++){
        int _state=(state+i)%10;        //注意这里一定要定义一个新的变量来储存新的状态,因为这里是递归,不定义新变量就会改变原先的值;
        ret+=dfs(per-1, _state, i==maxfp && fp);
    }
    if(!fp)dp[per][state]=ret;
    return ret;
}
long long Cnt(long long n){
    int per=0;
    memset(dp, -1, sizeof(dp));
    memset(digit, 0, sizeof(digit));
    while(n){
        digit[++per]=n%10;
        n/=10;
    }
    return dfs(per, 0, true);
}
int main(){

    int T, X;
    cin >> T;
    X=0;
    while(T--){
        X++;
        long long A, B;
        cin >> A >> B;
        cout << "Case #" << X << ": " << Cnt(B)-Cnt(A-1) << endl;
    }

    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值