2020-09-02

Python Use List Comprehensions and matrix data structure to solve questions

Introduction

I had three files in hand, named (English subtitles.txt, Japanese subtitles, Romanji Subtitles), need to be composed as one file. And, every row in a file, say English file, need to be followed with other two files separately.

Here are the files:

小さな小さな出来事に 悩んでいたのは何故だろう
後から後から溢れてく 涙が頬を伝うよ
「夢」なんてことを大げさに 捉えすぎていたのかなぁ
君にもらった言葉たち それだけ信じてた
久々に見た故郷の空 あの頃の「夢」に ほらまた私包まれた
Why are you worried about small little events
The tears flow over my cheeks
Was it too big to capture something like a “dream”?
The words I gave to you I just believed
The sky of my hometown I saw for a long time After all the “dream” of those days I was wrapped in myself
I remember the temperature transmitted to your smile and palm
I like it so much I say it now
I keep writing and the diary is what I wanted was the wind of melody
Chīsana chīsana dekigoto ni nayande ita no wa nazedarō
Ato kara ato kara afurete ku namida ga hoho o tsutau yo
`Yume’ nante koto o ōgesa ni torae sugite ita no ka nā
Kimi ni moratta kotoba-tachi soredake shinji teta
Hisabisa ni mita furusato (furusato) no sora anogoro no `yume’ ni hora mata watashi tsutsuma reta
Kimi no egao ya tenohira ni tsutawaru ondo oboe teru
Kon’nani sukide ite kureru ima iu yo arigatō
Kaki tsudzukete ku daiarī hoshikatta no wa merodī no kaze

expected output file:

小さな小さな出来事に 悩んでいたのは何故だろう
Chīsana chīsana dekigoto ni nayande ita no wa nazedarō
Why are you worried about small little events

後から後から溢れてく 涙が頬を伝うよ
Ato kara ato kara afurete ku namida ga hoho o tsutau yo
The tears flow over my cheeks

Using Matrix instead of multiple lists and loops

The matrix to store multiple lists is a good idea. Using columns and rows to describe new list members is easy to understand and abstract. By doing this, we can figure out that our expected output list is a comb of each column of data of matrix. Then,what we need to do next is just convert member list to string.

在这里插入图片描述

Using list Comprehensions to simplify code

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each element is the result of some operations applied to each member of another sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares = []
>>> for x in range(10):
...     squares.append(x**2)
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Note that this creates (or overwrites) a variable named x that still exists after the loop completes. We can calculate the list of squares without any side effects using:

squares = list(map(lambda x: x**2, range(10)))

or, equivalently:

squares = [x**2 for x in range(10)]

which is more concise and readable.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for or if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and if clauses which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

and it’s equivalent to:

>>> combs = []
>>> for x in [1,2,3]:
...     for y in [3,1,4]:
...         if x != y:
...             combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Note how the order of the for and if statements is the same in both these snippets.

If the expression is a tuple (e.g. the (x, y) in the previous example), it must be parenthesized.

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = ['  banana', '  loganberry ', 'passion fruit  ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]
  File "<stdin>", line 1, in <module>
    [x, x**2 for x in range(6)]
               ^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
List comprehensions can contain complex expressions and nested functions:

>>>
>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

Nested List Comprehensions

The initial expression in a list comprehension can be any arbitrary expression, including another list comprehension.

Consider the following example of a 3x4 matrix implemented as a list of 3 lists of length 4:

>>> matrix = [
...     [1, 2, 3, 4],
...     [5, 6, 7, 8],
...     [9, 10, 11, 12],
... ]

The following list comprehension will transpose rows and columns:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
As we saw in the previous section, the nested listcomp is evaluated in the context of the for that follows it, so this example is equivalent to:

>>>
>>> transposed = []
>>> for i in range(4):
...     transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

which, in turn, is the same as:

>>> transposed = []
>>> for i in range(4):
...     # the following 3 lines implement the nested listcomp
...     transposed_row = []
...     for row in matrix:
...         transposed_row.append(row[i])
...     transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

In the real world, you should prefer built-in functions to complex flow statements. The zip() function would do a great job for this use case:

>>> list(zip(matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

Code

j = []
r = []
e = []


for line in open("japanese","r",encoding="utf8").readlines():
    if line != "\n":
        j.append(line)
for line in open("romanji","r",encoding="utf8").readlines():
    if line != "\n":
        r.append(line)
r = [i for i in r[1::2]]

for line in open("english","r",encoding="utf8").readlines():
    if line != "\n":
        e.append(line)

n = ['\n' for i in range(20)]

matrix = [j,r,e,n]

row_list = [''.join(str(elem) for elem in [row[column] for row in matrix]) for column in range(e.__len__())]

f = open("lyric.txt","w+",encoding="utf8")
f.writelines(row_list)

summary

The brackets might change the order of for and if statements.

标题基于Spring Boot的音乐播放网站设计与实现研究AI更换标题第1章引言介绍音乐播放网站的研究背景、意义、国内外现状及论文方法与创新点。1.1研究背景与意义阐述音乐播放网站在当今数字化时代的重要性与市场需求。1.2国内外研究现状分析国内外音乐播放网站的发展现状及技术特点。1.3研究方法以及创新点概述论文采用的研究方法及在设计与实现上的创新点。第2章相关理论与技术基础总结音乐播放网站设计与实现所需的相关理论和技术。2.1Spring Boot框架介绍介绍Spring Boot框架的基本原理、特点及其在Web开发中的应用。2.2音乐播放技术概述概述音乐播放的基本原理、流媒体技术及音频处理技术。2.3数据库技术选型分析适合音乐播放网站的数据库技术,如MySQL、MongoDB等。第3章系统设计详细介绍音乐播放网站的整体设计方案。3.1系统架构设计阐述系统的层次结构、模块划分及各模块的功能。3.2数据库设计介绍数据库表结构、关系及数据存储方式。3.3界面设计用户界面的设计原则、布局及交互方式。第4章系统实现详细介绍音乐播放网站的具体实现过程。4.1开发环境与工具介绍开发所需的软件、硬件环境及开发工具。4.2核心功能实现阐述音乐播放、搜索、推荐等核心功能的实现细节。4.3系统测试与优化介绍系统测试的方法、过程及性能优化策略。第5章研究结果与分析呈现音乐播放网站设计与实现的研究结果。5.1系统功能测试结果展示系统各项功能的测试结果,包括功能完整性、稳定性等。5.2用户反馈与评价收集并分析用户对音乐播放网站的使用反馈与评价。5.3对比方法分析将本设计与实现与其他类似系统进行对比分析,突出优势与不足。第6章结论与展望总结音乐播放网站设计与实现的研究成果,并展望未来发展方向。6.1研究结论概括音乐播放网站设计与实现的主要成果及创新点。6.2展望指出当前研究的不足,提出未来改进方向及可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值