ROUGE评价算法学习

ROUGE评价算法基于召回率,用于衡量候选摘要与参考摘要的相似度。ROUGE-N计算共同n-gram,直观但区分度有限;ROUGE-L利用最长公共子序列,考虑词序,适用于单文档和短摘要评估。在某些情况下,不同候选摘要可能得分相同,但实际意义不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      ROUGE Recall-Oriented Understudy for Gisting Evaluation) ,在2004年 ISI 的Chin-Yew  Lin 提出的一种自动摘要评价方法,现被广泛应用于 DUC( Document Understanding Conference )的摘要评测任务中。 ROUGE 基于摘要中 n 元词( n-gram )的共现信息来评价摘要,是一种面向 n 元词召回率的评价方法。基本思想为由多个专家分别生成人工摘要,构成标准摘要集,将系统生成的自动摘要与人工生成的标准摘要相对比,通过统计二者之间重叠的基本单元(n元语法、词序列和词对)的数目,来评价摘要的质量。通过与专家人工摘要的对比,提高评价系统的稳定性和健壮性。该方法现已成为摘要评价技术的通用标注之一。 ROUGE 准则由一系列的评价方法组成,包括 ROUGE-N(N=1、2、3、4,分别代表基于1元词到4元词的模型) ROUGE-L,ROUGE-S, ROUGE-W, ROUGE-SU 等。在自动文摘相关研究中,一般根据自己的具体研究内容选择合适的 ROUGE 方法。

        其中,n表示n-gram的长度{ Reference Summaries}表示参考摘要,即事先获得的标准摘要,表示候选摘要和参考摘要中同时出现n-gram的个数,则表示参考摘要中出现的n-gram个数。不难看出,ROUGE公式是由召回率的计算公式演变而来的,分子可以看作“检出的相关文档数目”,即系统生成摘要与标准摘要相匹配的N-gram个数,分母可以看作“相关文档数目”,即标准摘要中所有的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值