'zero' has been renamed to 'kCMTimeZero'

博客提及Swift语言版本为Swift5,这是信息技术领域中移动开发方向的重要信息,Swift常用于IOS开发等场景。

Swift Language Version ----> Swift5

在这里插入图片描述

import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision # 数据库模块 torch.manual_seed(1) # reproducible DOWNLOAD_MNIST = True BATCH_SIZE = 50 # 获取训练用的Mnist手写数字 train_data = torchvision.datasets.MNIST( root='./mnist/', # 保存或者提取数据的位置 train=True, # this is training data transform=torchvision.transforms.ToTensor(), # 將原始输入数据转化成tensor download=DOWNLOAD_MNIST, # 是否需要下载原始数据 ) # 批训练 50 samples, 1 channel, 28x28 (50, 1, 28, 28) train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # 如果你已经下载好了mnist数据就写 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d( in_channels=1, # input height out_channels=16, # n_filters kernel_size=5, # filter size stride=1, # filter movement/step padding=2, # 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/ 2 当 stride=1 ), nn.ReLU(), # activation nn.MaxPool2d(kernel_size=2), # 在 2x2 空间里向下采样 ) self.conv2 = nn.Sequential( # input shape (16, 14, 14) nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14) nn.ReLU(), # activation nn.MaxPool2d(2), # output shape (32, 7, 7) ) self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) # 展平多维的卷积图 (batch_size, 32 * 7 * 7) output = self.out(x) return output # 测试数据 test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)/ 255. test_y = test_data.test_labels cnn = CNN() optimizer = torch.optim.Adam(cnn.parameters(), lr=0.01) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # training and testing EPOCH=10 for epoch in range(EPOCH): for step, (x, y) in enumerate(train_loader): b_x = Variable(x) # batch x b_y = Variable(y) # batch y output = cnn(b_x) # cnn output loss = loss_func(output, b_y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if step % 50 == 0: test_output, last_layer = cnn(test_x) pred_y = torch.max(test_output, 1)[1].data.squeeze() accuracy = sum(pred_y == test_y) / float(test_y.size(0)) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)代码报错PS C:\Users\Wang\Desktop\Minst> & C:\Users\Wang\AppData\Local\Programs\Python\Python311\python.exe "c:/Users/Wang/Desktop/Minst/import torch4.py" C:\Users\Wang\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision\datasets\mnist.py:81: UserWarning: test_data has been renamed data warnings.warn("test_data has been renamed data") c:\Users\Wang\Desktop\Minst\import torch4.py:50: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead. test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)/ 255. C:\Users\Wang\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision\datasets\mnist.py:71: UserWarning: test_labels has been renamed targets warnings.warn("test_labels has been renamed targets") Traceback (most recent call last): File "c:\Users\Wang\Desktop\Minst\import torch4.py", line 71, in <module> test_output, last_layer = cnn(test_x) ^^^^^^^^^^^^^^^^^^^^^^^ ValueError: too many values to unpack (expected 2)
最新发布
12-10
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值