1、求双连通分量
#include <vector>
#include <stack>
struct Edge {
int u, v;
}
int pre[maxn], isct[maxn], bccno[maxn];
int dfs_clock, bcc_cnt;
vector<int> G[maxn], bcc[maxn];
stack<int> S;
int dfs(int u, int fa) {
int lowu = pre[u] = ++dfs_clock;
int child = 0;
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
Edge e = (Edge){u, v};
if (!pre[v]) {
S.push(e);
child++;
int lowv = dfs(v, u);
lowu = min(lowu, lowv);
if (lowv >= pre[u]) {
isct[u] = 1;
bcc_cnt++;
bcc[bcc_cnt].clear();
for (; ;) {
Edge x = S.top();
S.pop();
if (bccno[x.u] != bcc_cnt) {
bcc[bcc_cnt].push_back(x.u);
bccno[x.u] = bcc_cnt;
}
if (bccno[x.v] != bcc_cnt) {
bcc[bcc_cnt].push_back(x.v);
bccno[x.v] = bcc_cnt;
}
if (x.u == u && x.v == v) break;
}
}
}
else if (pre[v] < pre[u] && v != fa) {
S.push(e);
lowu = min(lowu, pre[v]);
}
}
if (fa < 0 && child == 1) isct[u] =0;
return lowu;
}
void find_bcc(int n) {
memset(pre, 0, sizeof(pre));
memset(isct, 0, sizeof(isct));
memset(bccno, 0, sizeof(bccno));
dfs_clock = bcc_cnt = 0;
for (int i = 0; i < n; i++) {
if (!pre[i]) dfs(i, -1);
}
}
2、求有向图的强连通分量
#include <stack>
#include <vector>
vector<int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn];
int dfs_clock, scc_cnt;
stack<int> S;
void dfs(int u) {
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if (!pre[v]) {
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if (!sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if (lowlink[u]== pre[u]) {
scc_cnt++;
for (; ;) {
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if (x == u) break;
}
}
}
void find_scc(int n) {
dfs_clock = scc_cnt = 0;
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
for (int i = 0; i < n; i++) {
if (!pre[i]) dfs(i);
}
}