【阅读笔记】(神经网络首个理论证明)《Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradien Descent》

本文记录了博主阅读Google给出的神经网络首个理论证明的论文《Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradien Descent》的阅读笔记。更新于2019.02.26。

摘要

  1. 在无穷宽度条件下,宽神经网络由在初始参数处的一阶泰勒展开式线性模型主导。(for wide neural networks, …, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters.)
  2. 将贝叶斯神经网络和高斯过程的对应部分映射,基于梯度和平方损失的宽神经网络的训练生成的测试集的估计,是由一个特定的核下的高斯过程生成的。(Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel.)
  3. 尽管上述结论是在无限宽模型下得到的,论文作者发现实验证明对于可操作的有限尺寸的神经网络,由神经网络得到的估计与线性模型得到的估计也是基本一致的。且这个一致性对于不同结构、不同优化方法、不同损失函数,都是成立的。(While these theoretical results
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值