问题来源
问题描述
You are given a list of non-negative integers, a1, a2, …, an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example1
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
问题分析
中文大意就是给出一系列数字,仅通过+/-操作来得出目标值,计算一共有多少种方法可以得到该值。我在这里采用的是最笨的枚举法来解决问题,复杂度为 O(n^2)。然而实际上此题可以用动态规划的方法来解题,具体可参考此处
解决代码
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int count = 0;
cac(nums, 0,0,S,count);
return count;
}
void cac(vector<int>& nums, int index, int sum, int S, int & count) {
if (index == nums.size()) {
if (sum == S) count++;
return;
}
cac(nums, index+1, sum+nums[index], S, count);
cac(nums, index+1, sum-nums[index], S, count);
}
};

被折叠的 条评论
为什么被折叠?



