PAT 甲级 1142 Maximal Clique (25分)

本文介绍了一种算法,用于判断给定子集的顶点是否能形成一个最大团子图,即所有顶点两两相邻且无法通过添加更多相邻顶点来扩展。算法首先检查子集是否构成团子图,再逐个尝试添加未包含的顶点以验证其最大性。

A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line Yes if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal; or if it is not a clique at all, print Not a Clique.
Sample Input:
8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1
Sample Output:
Yes
Yes
Yes
Yes
Not Maximal
Not a Clique
题目大意:
max_clique:集合内的所有结点都两两领接且不能往这个集合内添加任何结点继续满足这个条件;
clique:结合内的所有结点都两两领接
故本题分为两个步骤先判断是否满足clique条件,然后将所有未包括在判断点集合的点依次加入判断点集合看是否还是clique只要有一个点能满足clique条件那么判断点集合就不是Max_clique;
AC代码:

#include<iostream>
#include<vector>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=201;
bool adjacent[maxn][maxn];//记录临界顶点
int n;
bool is_clique(vector<int>v){
for(int i=0;i<v.size();i++){
for(int j=i+1;j<v.size();j++){
if(adjacent[v[i]][v[j]]!=true){
    return false;}
}
}
return true;}
bool is_Maximal(vector<int>v){
    if(!is_clique(v))
        return false;
for(int i=1;i<=n;i++){
if(find(v.begin(),v.end(),i)==v.end()){//说明该节点不在;
bool flag=true;
for(int j=0;j<v.size();j++){
if(adjacent[i][v[j]]==false){
    flag=false;}
                           }
if(flag==true)
return false;                         }
                    }
return true;
}
int main(){
int m,k;
scanf("%d %d",&n,&m);
for(int i=0;i<m;i++){
int a,b;
scanf("%d%d",&a,&b);
adjacent[a][b]=adjacent[b][a]=true;
}
scanf("%d",&k);
for(int i=0;i<k;i++){
    int temp1,temp2;
    scanf("%d",&temp1);
    vector<int>v;
        for(int j=0;j<temp1;j++){
          scanf("%d",&temp2);
          v.push_back(temp2)  ;
    }
    if(is_Maximal(v)){
        printf("Yes\n"); }
    else if(is_clique(v))
{
    printf("Not Maximal\n");}
else{
    printf("Not a Clique\n");}
}
system("pause");
return 0;
}


基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值