Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
Output
For each test cases, you should output the maximum flow from source 1 to sink N.
Sample Input
2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
Sample Output
Case 1: 1 Case 2: 2
Author
HyperHexagon
Source
Recommend
zhengfeng | We have carefully selected several similar problems for you: 3572 3416 3081 3491 1533
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
最大流~
还是模板题~
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
int t,n,m,x,y,v,a[1001],ne[1001],ans,cnt;
struct edge{
int x,y,cap,flow;
edge(int u,int v,int k,int z):x(u),y(v),cap(k),flow(z) {}
};
vector<edge> ed;
vector<int> p[2001];
int main()
{
scanf("%d",&t);
while(t--)
{
ans=0;ed.clear();
for(int i=1;i<=n;i++) p[i].clear();
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d%d%d",&x,&y,&v);
ed.push_back(edge(x,y,v,0));
ed.push_back(edge(y,x,0,0));
int tot=ed.size();
p[x].push_back(tot-2);
p[y].push_back(tot-1);
}
while(1)
{
memset(a,0,sizeof(a));
queue<int> q;q.push(1);a[1]=999999999;
while(!q.empty())
{
int k=q.front();q.pop();int tot=p[k].size();
for(int i=0;i<tot;i++)
{
edge z=ed[p[k][i]];
if(!a[z.y] && z.cap>z.flow)
{
a[z.y]=min(a[k],z.cap-z.flow);
ne[z.y]=p[k][i];q.push(z.y);
}
}
if(a[n]) break;
}
if(!a[n]) break;
for(int i=n;i!=1;i=ed[ne[i]].x)
{
ed[ne[i]].flow+=a[n];
ed[ne[i]^1].flow-=a[n];
}
ans+=a[n];
}
printf("Case %d: %d\n",++cnt,ans);
}
return 0;
}

1万+

被折叠的 条评论
为什么被折叠?



