题目背景
“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!题目描述
为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排。可是如何挑呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~)。这可难为了他,请你帮帮忙吧!
PS:一个数的最大公约数即本身。
输入输出格式
输入格式:
两个空格分开的正整数n和k。(n>=k>=1)
输出格式:
一个整数,为最大的默契值。
输入输出样例
4 2
2
说明
【题目来源】
lzn原创
【数据范围】
对于20%的数据,k<=2,n<=1000
对于另30%的数据,k<=10,n<=100
对于100%的数据,k<=1e9,n<=1e9(神犇学校,人数众多)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
数论题~蠢蠢的我本来想求最大公约数,后来发现原来这道题想通了以后是如此简单……膜拜神犇kkk……
以下内容来自神犇kkksc03的题解:
首先,若可能的最大公约数为a,取出的k个数为X1,X2,……,Xk且满足X1<X2<……<Xk,那么有X1>=a,X2>=2a,……,Xk>=ka。又∵Xk<=n,∴n>=ka,∴a<=n/k,又∵a为整数,∴a<=[n/k]([]为取整符号)。
另一方面,我们取[n/k],2*[n/k],……,k*[n/k],它们的最大公约数a=[n/k],且它们都小于等于n大于等于1,且互不相等,满足条件。
∴答案即为[n/k]。
所以代码长度堪比A+B啊……
#include<cstdio>
int n,k;
int main()
{
scanf("%d%d",&n,&k);
printf("%d\n",n/k);
return 0;
}