导读:中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
本文转录自陈地长(中信信用卡中心信息技术部 高级工程师)在 Doris Summit Asia 2024 上的演讲,经编辑整理。
中信银行信用卡中心(以下简称“卡中心”)隶属于中信银行,致力于为广大消费者提供涵盖支付结算、消费信贷、中收增值和特色权益的“金融+生活”全方位服务。卡中心构建了高端、商旅、年轻、商超、车主及零售六大主流产品体系,形成了产品、渠道、经营、合规风控和服务五大经营体系,综合实力在股份制银行中名列前茅。
为确保业务系统的稳定运行、提升运维效率和用户体验,卡中心建立了大规模的日志云分析平台。该平台不仅需支持实时监控和故障排查,还需满足金融监管对日志审计的严格要求。目前,平台每日新增日志数据突破 140 亿条、80TB,全量归档日志量超 40PB。
早期基于 Elasticsearch 构建的日志云平台面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此,卡中心决定引入 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
日志数据分析运维需求背景
在当前日益复杂的业务需求下,催生出了各种复杂的应用系统,这些应用系统分布在 Linux、Windows 等多种操作系统之上,同时依赖于各种网络设备、安全设备、中间件和数据库等服务,这些软硬件运行时每天可产生的日志量能达到 TB 级别。一旦系统运行出现异常,就需要通过分析日志进行问题排查。
日志的存在原本是通过其所记录多样化的数据、关键信息来帮助我们更好了解系统的运行状态。然而,面对卡中心每日新增 TB 级别日志数据,当系统异常时,日志格式的多样性同样也给数据分析带来极大的困难,主要挑战如下:
- 格式难以统一:日志数据以自由文本形式呈现,尽管相较于结构化数据信息更丰富,但
中信银行用Doris替换ES提升日志分析效能

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



