tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
(0) Resource exhausted: OOM when allocating tensor with shape[64] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node res1_0_branch_2a_bn/FusedBatchNormV3}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[[ln/l2_normalize/_1259]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
(1) Resource exhausted: OOM when allocating tensor with shape[64] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node res1_0_branch_2a_bn/FusedBatchNormV3}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
0 successful operations.
0 derived errors ignored.
本文详细解析了在使用TensorFlow进行深度学习模型训练时遇到的GPU内存溢出错误,具体表现为在分配形状为[64]的浮点型张量时,GPU设备上发生资源耗尽错误。文章提供了添加report_tensor_allocations_upon_oom选项至RunOptions以获取内存溢出时的张量分配信息的方法,帮助读者理解和解决类似问题。
546

被折叠的 条评论
为什么被折叠?



