复现deep speaker遇到的问题,记录一下

本文详细解析了在使用TensorFlow进行深度学习模型训练时遇到的GPU内存溢出错误,具体表现为在分配形状为[64]的浮点型张量时,GPU设备上发生资源耗尽错误。文章提供了添加report_tensor_allocations_upon_oom选项至RunOptions以获取内存溢出时的张量分配信息的方法,帮助读者理解和解决类似问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found.
  (0) Resource exhausted: OOM when allocating tensor with shape[64] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
     [[{{node res1_0_branch_2a_bn/FusedBatchNormV3}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[ln/l2_normalize/_1259]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

  (1) Resource exhausted: OOM when allocating tensor with shape[64] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
     [[{{node res1_0_branch_2a_bn/FusedBatchNormV3}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

0 successful operations.
0 derived errors ignored.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值